Если все точки крыла самолета встречают поток воздуха, имеющий одну и ту же скорость, то элементы лопасти вращающегося несущего винта вертолета обтекаются воздухом с различной скоростью. Величину окружной скорости элемента лопасти можно определить по формуле
Vокр. эл = n∙2π∙Rэ/60
где
Однако окружная скорость на конце лопасти несущего винта вертолета не должна превышать 0,7–0,8 скорости звука, т. е. 220–270 м/сек, так как при большей скорости резко возрастают потери на винте, а следовательно, уменьшается его коэффициент полезного действия.
Вместе с тем очень выгодно иметь несущие винты наибольшего диаметра, так как при этом резко возрастает их коэффициент полезного действия вследствие увеличения площади, ометаемой лопастями, и уменьшения нагрузки на квадратный метр этой площади.
Если у самолетов важно сохранять в определенных пределах нагрузку на квадратный метр площади крыла, которая определяется по формуле
p = Gпол/Sкр,
где
то у вертолетов принято определять нагрузку на квадратный метр ометаемой несущим винтом площади, которая равна
p = Gпол/π∙R2∙K
где
Следует иметь в виду, что при определении нагрузки на ометаемую винтом площадь необходимо брать не геометрическую
K = Fэф/Fгеом = 0,9 ÷ 0,92
Обычно на хорошо летающих вертолетах нагрузка на квадратный метр ометаемой винтом площади имеет следующие значения:
— для легких вертолетов — 11–15
— для тяжелых вертолетов — 18–23
Диаметр несущих винтов на двух-трехместных вертолетах достигает 10–15 м, на средних вертолетах — 17–20 м, а на тяжелых вертолетах — 20–25 м и более.
Отношение площади всех лопастей несущего винта к ометаемой площади принято называть коэффициентом заполнения (
У всех, кто в первый раз видел вертолет с остановленным несущим винтом, закрадывалось сомнение: могут ли узкие и гибкие лопасти несущего винта, на вид такие непрочные, быть надежной опорой для такой тяжелой машины, как вертолет, тем более что они закреплены на втулке винта не жестко, а при помощи шарниров.
Однако эти опасения совершенно неосновательны.
Лопасть неподвижного несущего винта вертолета очень гибка. Опираясь на нижний упор втулки под действием только своего веса, она, сильно изогнувшись, свешивается вниз.
В таком состоянии она не способна удержать вес даже одного человека. Зато лопасть вращающегося несущего винта, растянутая огромной центробежной силой, которая на рассматриваемом вертолете достигает 9 г, а на тяжелых вертолетах может превышать 20 т, превращается в прочное, упругое и надежное крыло.
Схемы сил, действующих на одну из лопастей несущего винта в вертикальной плоскости и плоскости вращении, приведены на рис. 32; на векторах сил указаны примерные их значения, так как изображение их в одном масштабе потребовало бы большого размера рисунка.
Рис. 32.
1 — подъемная сила; 2 — сила веса лопасти; 3 — центробежная сила; 4 — кориолисовы силы
Угол
Кроме того, известно, что аэродинамическое качество лопасти в сильной степени зависит от состояния ее поверхности, формы в плане и геометрической закрутки. Чем глаже поверхность лопасти, тем выше ее качество. Трапециевидные в плане лопасти, так же как крылья самолета, с сужением 2–2,5 и с отрицательной на конце геометрической закруткой имеют качество на 10–12 % выше, чем прямоугольные в плане незакрученные лопасти (рис. 33).