Читаем Основы объектно-ориентированного программирования полностью

Следствием требования декомпозиции является разделение труда (division of labor): как только система будет разложена на подсистемы, работу над ними следует распределить между разными разработчиками или группами разработчиков. Это трудная задача, так как необходимо ограничить возможные взаимозависимости между подсистемами:

[x]. Необходимо свести такие взаимозависимости к минимуму; в противном случае разработка каждой из подсистем будет ограничиваться темпами работы над другими подсистемами.

[x]. Эти взаимозависимости должны быть известны: если не удастся составить перечень всех связей между подсистемами, то после завершения разработки проекта будет получен набор элементов программы, которые, возможно, будут работать каждая в отдельности, но не смогут быть собраны вместе в завершенную систему, удовлетворяющую общим требованиям к исходной задаче.

Наиболее очевидным примером обсуждаемого метода3.1), удовлетворяющим критерию декомпозиции, является метод нисходящего (сверху вниз) проектирования (top-down design). В соответствии с этим методом разработчик должен начать с наиболее абстрактного описания функции, выполняемой системой. Затем последовательными шагами детализировать это представление, разбивая на каждом шаге каждую подсистему на небольшое число более простых подсистем до тех пор, пока не будут получены элементы с настолько низким уровнем абстракции, что становится возможной их непосредственная реализация. Этот процесс можно представить в виде дерева.

Рис. 3.2.  Иерархия нисходящего проектирования

Типичным контрпримером (counter-example) является любой метод, предусматривающий включение в разрабатываемую систему модуля глобальной инициализации. Многие модули системы нуждаются в инициализации - открытии файлов или инициализации переменных.

Каждый модуль должен произвести эту инициализацию до начала выполнения непосредственно возложенных на него операций. Могло бы показаться, что все такие действия для всех модулей системы неплохо сосредоточить в одном модуле, который проинициализирует сразу все для всех. Подобный модуль будет обладать хорошей "согласованностью во времени" (temporal cohesion) в том смысле, что все его действия выполняются на одном этапе работы системы. Однако для получения такой "согласованности во времени", придется нарушать автономию других модулей. Придется модулю инициализации дать право доступа ко многим структурам данных, принадлежащим различным модулям системы и требующим специфических действий по их инициализации. Это означает, что автор модуля инициализации должен будет постоянно следить за структурами данных других модулей и взаимодействовать с их авторами. А это несовместимо с критерием декомпозиции.

Термин "согласованность во времени" пришел из метода, известного как структурное проектирование (см. комментарии к библиографии).

В объектно-ориентированном методе каждый модуль должен самостоятельно инициализировать свои структуры данных.
<p>Модульная Композиция</p>

Метод удовлетворяет критерию Модульной Композиции, если он обеспечивает разработку элементов программного продукта, свободно объединяемых между собой для получения новых систем, быть может, в среде, отличающейся от той, для которой эти элементы первоначально разрабатывались.

Композиция определяет процесс, обратный декомпозиции: элементы программного продукта извлекаются из того контекста, для которого они были первоначально предназначены, для использования их вновь в ином контексте.

Рис. 3.3.  Композиция

Метод модульного проектирования облегчает этот процесс, создавая автономные элементы программного продукта достаточно независимыми от первоначально поставленной задачи, что делает такое извлечение возможным.

Композиция непосредственно связана с повторным использованием. Этот критерий отражает старую мечту - превратить процесс конструирования программного продукта в работу по складыванию кубиков так, чтобы строить программы из фабрично изготовленных элементов.

[x]. Пример 1: Библиотеки подпрограмм. Библиотеки подпрограмм создаются как наборы компонуемых элементов. Одной из областей, где они успешно используются, являются численные вычисления, основанные на тщательно подготовленных библиотеках подпрограмм для решения задач линейной алгебры, метода конечных элементов, дифференциальных уравнений и др.

Перейти на страницу:

Похожие книги

«Ага!» и его секреты
«Ага!» и его секреты

Вы бы не хотели, скажем, изобрести что-то или открыть новый физический закон, а то и сочинить поэму или написать концерт для фортепьяно с оркестром?Не плохо бы, верно? Только как это сделать? Говорят, Шиллер уверял, будто сочинять стихи ему помогает запах гнилых яблок. И потому, принимаясь за работу, всегда клал их в ящик письменного стола. А физик Гельмгольц поступал иначе. Разложив все мысленно по полочкам, он дожидался вечера и медленно поднимался на гору лесной дорогой. Во время такой прогулки приходило нужное решение.Словом, сколько умов, столько способов заставить мозг работать творчески. А нет ли каких-то строго научных правил? Одинаковы ли они для математиков, биологов, инженеров, поэтов, художников? Да и существуют ли такие приемы, или каждый должен полагаться на свои природные способности и капризы вдохновения?Это тем более важно знать, что теперь появились «электронные ньютоны» — машины, специальность которых делать открытия. Но их еще нужно учить.Решающее слово здесь принадлежит биологам: именно они должны давать рецепты инженерам. А биологи и сами знают о том, как мы думаем, далеко не все. Им предстоит еще активнее исследовать лабораторию нашего мышления.О том, как ведутся эти исследования, как постепенно «умнеют» машины, как они учатся и как их учат, — словом, о новой науке эвристике рассказывает эта книга.

Елена Викторовна Сапарина

Зарубежная компьютерная, околокомпьютерная литература