С правильным набором чувств и слегка реструктурированной кортикальной памятью интеллектуальные машины могли бы жить и размышлять в виртуальных мирах, используемых в математике и физике. Например, большинство попыток в математике и науке требуют понимания того, как ведут себя объекты в мире, в котором больше чем три измерения. Теория струн, которая изучает структуру самого пространства, представляет Вселенную, как имеющую десять или более измерений. Для людей представляет большую сложность думать о математических проблемах в четырех или более измерений. Возможно интеллектуальная машина соответствующего дизайна могла бы понять многомерные пространства таким же образом, как мы понимаем трехмерные пространства, и, следовательно, была бы экспертом в предсказании того, как они себя поведут.
В конце концов мы могли бы использовать связку интеллектуальных машин в большой иерархии, точно так же как наш кортекс объединяет слух, осязание и зрение в высокоуровневую иерархию. Такая система автоматически училась бы моделировать и предсказывать мыслительные паттерны в популяции интеллектуальных машин. С распределенными системами передачи данных, такие как Интернет, отдельные интеллектуальные машины могли бы быть распределены по земному шару. Большая иерархия изучала бы более глубокие паттерны и видеть более сложные аналогии.
Цель этих размышлений показать, что есть множество способов, которыми мозгоподобные машины могли бы опередить наши способности. Они могли бы думать и учиться в миллион раз быстрее, чем можем мы, помнить огромное количество детальной информации или видеть невероятно абстрактные паттерны. У них могли бы быть более чувствительные сенсоры, чем у нас, или более распределенные сенсоры, или сенсоры для очень микроскопических феноменов. Они могли бы думать в трех, четырех или большем количестве измерений. Ни одна из этих интересных возможностей не зависит от того, что интеллектуальные машины подражают или действуют подобно людям, и они не требуют сложной робототехники.
Теперь мы можем полностью увидеть, как Тест Тьюринга сравнивая интеллект с человеческим поведением, ограничил наше видение возможного. Поняв в первую очередь, что такое интеллект, мы можем построить интеллектуальные машины, которые будут гораздо более ценны, чем простое копирование человеческого поведения. Интеллектуальные машины будут поразительным инструментом и сильно расширят наши знания о Вселенной.
Когда сбудется что-либо из этого? Построим мы интеллектуальные машины через пятьдесят лет, через двадцать или через пять? В мире высоких технологий есть высказывание, что изменения идут дольше, чем вы ожидаете в краткосрочной перспективе, но возникают быстрее, чем вы ожидаете в долгосрочной перспективе. Я видел это много раз. Кто-то выскакивает на конференции, объявляет новую технологию и заявляет, что она будет в каждом доме через четыре года. Оказывается, что он ошибался. Четыре года превращаются в восемь, и люди начинают думать, что это никогда не произойдет. Спустя некоторое время, когда всем кажется, что идея совсем умерла, она начинает возрождаться и становится большой сенсацией. Что-то подобное должно произойти с интеллектуальными машинами. Поначалу прогресс кажется медленным, но потом начинает быстро набирать обороты.
На конференциях нейроученых мне нравится обходить зал и просить каждого высказать свое мнение о том, когда у нас будет работающая теория кортекса. Некоторые люди — меньше 5 процентов — говорят «никогда» или «у нас она уже есть» (неожиданный ответ). Другие 5 процентов говорят «через 10 лет». Половина оставшихся говорят от 10 до 50 лет, или «в течение моей жизни». Оставшиеся говорят от 50 до 200 лет, или «уже после моей жизни». Я на стороне оптимистов. Мы в течение десятилетий жили в «медленном» периоде, так что многим людям кажется, что прогресс в теоретической нейронауке и интеллектуальных машинах окончательно застрял. Опираясь на прогресс последних 50 лет естественно предположить, что мы никогда не приблизимся к ответу. Но я верю, что мы на поворотной точке и прогресс тронется с места.
Возможно ускорить будущее, чтобы приблизить поворотную точку. Одна из целей этой книги убедить вас, что при наличии корректных теоретических основ мы можем добиться ускоренного прогресса в понимании кортекса — что с моделью «память-предсказание» в качестве руководства мы можем дешифровать детали того, как работает мозг и наше мышление. Это знание, необходимое для построения интеллектуальных машин. Если это верная модель, прогресс может вскоре продолжиться.