Когда вы пытаетесь рассчитать наклон касательной, процесс приближения вам портит ноль. По мере того как аппроксимация делается все лучше и лучше, точки на кривой, которые вы для нее используете, оказываются все ближе друг к другу. Это означает, что разница по вертикали, Ø
Каждый раз, когда математики пытались иметь дело с бесконечностью или с нолем, они сталкивались с логическими трудностями. Чтобы вычислить объем бочки или площадь параболы, математики складывали друг с другом бесконечные ноли; чтобы найти касательную к кривой, они делили ноль на самого себя. Ноль и бесконечность заставляли простой акт нахождения касательной или определения площади выглядеть противоречащими самим себе. Эти трудности положили бы конец интересным рассуждениям, если бы не одно обстоятельство: эти бесконечности и ноли служат ключом к пониманию природы.
Ноль и тайна математического анализа
Чем больше ум анализирует и развивает эти неуловимые идеи, тем больше он теряется и заходит в тупик; предметы, вначале мелькающие и крошечные, вскоре вообще исчезают из поля зрения… Это не конечные величины, не бесконечно малые величины, но и не ничто. Не назвать ли нам их призраками исчезнувших величин?
Проблемы касательной и площади оказываются в запутанном состоянии из-за одних и тех же трудностей с бесконечностью и нолями. Это неудивительно, поскольку проблема касательной и проблема площади на самом деле одно и то же. Они обе — аспекты дифференциального и интегрального исчисления, научного инструмента, много более мощного, чем все, что было известно ранее. Телескоп, например, дал ученым возможность обнаружить луны и звезды, никогда раньше не наблюдавшиеся. Дифференциальное и интегральное исчисление, с другой стороны, дало ученым способ выражать законы, управляющие движением небесных тел, — и законы, со временем позволившие узнать, как эти луны и звезды возникли. Дифференциальное и интегральное исчисление оказалось истинным языком природы, но оно было пронизано нолями и бесконечностью, которые грозили уничтожить новый инструмент.
Его первооткрыватель едва не умер, не успев сделать первый вдох. Исаак Ньютон родился недоношенным на Рождество 1642 года, таким маленьким, что помещался в кружке объемом в кварту. Его отец, фермер, умер за два месяца до рождения сына.
Несмотря на тяжелое детство[27] и желание матери, чтобы он стал фермером, Ньютон поступил в 1660 году в Кембриджский университет и преуспел. За несколько лет он создал систематический метод разрешения проблемы касательной: теперь он мог вычислить касательную к любой плавной кривой в любой точке. Этот процесс представляет собой первую часть математического анализа, теперь известную как дифференциальное исчисление. Впрочем, способ Ньютона не особенно похож на тот, которым мы пользуемся сегодня.
Стиль дифференцирования Ньютона основывался на флюксиях (производных) — потоках — математических выражений, которые он называл флюентами (переменными). Как пример флюксий Ньютона рассмотрим уравнение
Метод дифференцирования Ньютона основывался на одном приеме: он позволял флюксиям изменяться, но изменяться бесконечно мало. По сути, он не давал им времени течь. В обозначениях Ньютона
Уравнение тогда принимает вид: