Читаем Нейротон. Занимательные истории о нервном импульсе полностью

Современная ИНС любой сложности состоит из элементов – нейронов. Нейрон – это элементарная вычислительная единица, способная получать информацию, производить над ней простые вычисления и передавать её дальше. Нейроны бывают трёх типов:

S-нейроны – это слой сенсоров или рецепторов. В физическом воплощении они соответствуют, например, светочувствительным клеткам сетчатки глаза или фоторезисторам матрицы фотоаппарата. Каждый нейрон-рецептор может находиться либо в состоянии покоя, либо в возбуждённом состоянии, в последнем случае он передаёт единичный сигнал в следующий слой, ассоциативным нейронам.

Рисунок 45 Логическая схема элементарной однослойной НИС. Веса S – A связей могут иметь значения —1, +1 или 0 (то есть отсутствие связи). Веса A – R связей W могут быть любыми.

Ассоциативные нейроны (A-нейроны), названы так потому что каждому такому элементу, соответствует некоторый набор (ассоциация) S-нейронов. A-нейрон активизируется, как только количество сигналов от S-нейронов на его входе превысит некоторый порог θ.

Сигналы от возбудившихся A-нейронов, в свою очередь, передаются в сумматор R, причём сигнал от i-го ассоциативного нейрона передаётся с коэффициентом (Wi). Этот коэффициент называется весом A—R связи.

Так же, как и A-нейрон, R-нейрон подсчитывает сумму значений входных сигналов, помноженных на веса (линейную форму).

На выходе R-нейрона генерируется «1», если сумма входящих сигналов превысит заданный порог θ, иначе на выходе будет «—1» или «0». Математически, функцию, реализуемую R-элементом, можно записать так:

У каждого из рассмотренных нейронов есть два обязательных параметра: входные данные «вход» и выходные «выход». В случае сенсо́рного S-нейрона: «вход» равен «выходу». В остальных, на «входы» передаётся суммарная информация «выходов» нейронов из предыдущего слоя которая после нормализации попадает на «выход».

В каждой искусственной сети обязательно присутствуют входной слой – S, выходной слой, который выводит результат, и в зависимости от сложности есть некоторое количество слоёв (A).

Что такое искусственный синапс?

Синапс – это связь между двумя нейронами. У синапсов есть всего один параметр – вес (Wi). Благодаря ему информация между нейронами передаётся с определённым коэффициентом. Допустим, есть три нейрона, которые передают информацию следующему. Тогда мы имеем три веса, соответствующие каждому из их синапсов. Информация, переданная через синапс бо́льшим весовым коэффициентом, окажется доминирующей в следующем нейроне (пример – смешение цветов). На самом деле, совокупность весов нейронной сети или матрица весов – это и есть своеобразный мозг всей системы.

Рисунок46. Логика искусственного синапса

Нейрон имеет один выход, называемый аксоном по аналогии с биологическим прототипом. Но с единственного выхода нейрона сигнал может поступать на произвольное число входов других нейронов через синапсы с разными весами.

При этом, по аналогии со связями между биологическими нейронами, связи с положительным весом называются возбуждающими, а с отрицательным – тормозящими.

Как работает искусственная нейронная сеть?

Теперь, когда у нас есть входные данные и веса́, мы можем получить выходные данные. Получив выходные данные, мы передаём их дальше. И так повторяем для всех слоёв, пока не дойдём до выходного нейрона. Включив такую сеть в первый раз, мы, вероятно, получим результат весьма далёкий от правильного. Это потому что сеть «не натренирована». Чтобы улучшить результаты мы будем её тренировать. Но прежде давайте введём несколько терминов и свойств нейронной сети.

Тренировочный сет – это последовательность данных, которыми оперирует нейронная сеть.

Эпоха. Перед запуском нейронной сети эта величина устанавливается в 0 и имеет предел, заданный вручную. Эпоха увеличивается каждый раз, по завершении всего набора тренировочных сетов.

Ошибка. Этот термин применяется к процентной величине, показывающей расхождение между правильным и полученным ответами. Ошибка формируется каждую эпоху и по мере обучения сети должна снижаться. Для вычисления ошибки разработаны различные алгоритмы (мы их рассматривать не будем).

Важным свойством любой нейронной сети является способность к обучению. Процесс обучения сводится к процедуре настройки весов и порогов, приводящих к уменьшению показателя ошибок.

После обучения сеть может работать в режиме распознавания и обобщения. При этом ей предъявляются ранее неизвестные объекты, а она должна установить, к какому классу они принадлежат.

Обученная нейронная сеть приобретает способность выявлять сложные и даже неочевидные взаимосвязи между входными данными и выходными. Такая сеть сможет выдать верный результат на основании данных, которых не было в обучающей выборке, а также неполных и частично искажённых данных.

Перейти на страницу:

Похожие книги

Психология стресса
Психология стресса

Одна из самых авторитетных и знаменитых во всем мире книг по психологии и физиологии стресса. Ее автор — специалист с мировым именем, выдающийся биолог и психолог Роберт Сапольски убежден, что человеческая способность готовиться к будущему и беспокоиться о нем — это и благословение, и проклятие. Благословение — в превентивном и подготовительном поведении, а проклятие — в том, что наша склонность беспокоиться о будущем вызывает постоянный стресс.Оказывается, эволюционно люди предрасположены реагировать и избегать угрозы, как это делают зебры. Мы должны расслабляться большую часть дня и бегать как сумасшедшие только при приближении опасности.У зебры время от времени возникает острая стрессовая реакция (физические угрозы). У нас, напротив, хроническая стрессовая реакция (психологические угрозы) редко доходит до таких величин, как у зебры, зато никуда не исчезает.Зебры погибают быстро, попадая в лапы хищников. Люди умирают медленнее: от ишемической болезни сердца, рака и других болезней, возникающих из-за хронических стрессовых реакций. Но когда стресс предсказуем, а вы можете контролировать свою реакцию на него, на развитие болезней он влияет уже не так сильно.Эти и многие другие вопросы, касающиеся стресса и управления им, затронуты в замечательной книге профессора Сапольски, которая адресована специалистам психологического, педагогического, биологического и медицинского профилей, а также преподавателям и студентам соответствующих вузовских факультетов.

Борис Рувимович Мандель , Роберт Сапольски

Биология, биофизика, биохимия / Психология и психотерапия / Учебники и пособия ВУЗов