Читаем Нейротон. Занимательные истории о нервном импульсе полностью

В итоге внутри клетки создаётся высокая концентрация K+, а во внеклеточной среде – высокая концентрация ионов Na+.

1 Конформа́ция молекулы – пространственное расположение атомов в молекуле определённой конфигурации, обусловленное поворотом вокруг одной или нескольких одинарных сигма-связей.

<p>Математическая модель</p>

В 1952 году для описания электрических механизмов, обусловливающих возникновение и распространение нервного сигнала в гигантском аксоне кальмара Аланом Ллойдом Ходжкином и Эндрю Хаксли разработана математическая модель, названная в честь авторов «Модель Ходжкина—Хаксли».

Точечная модель Ходжкина—Хаксли представляет собой систему обыкновенных дифференциальных уравнений, которая, в частности, пригодна для описания характеристик электрического сигнала.

Модель Ходжкина—Хаксли возникла не на пустом месте. Вот её предыстория.

Метод «интегрировать-и-сработать»

Одна из ранних математических моделей возбудимой клетки была предложена в 1907 году французским физиологом Луи Лапиком (Louis Lapicque, 1866—1952). Модель была описана следующей формулой:

,

которая есть производная по времени закона ёмкости, Q = CV. Если на вход системы подаётся ток, то разность потенциалов (напряжение Vm,) на мембране возрастает со временем, пока не достигает некоторого порогового значения Vth, при котором происходит скачкообразное изменение потенциала на выходе и напряжение сбрасывается до остаточного потенциала. После этого цикл работы повторяется с начала, пока опять не накопится энергия для следующего срабатывания. Эта модель имеет один существенный недостаток – бесконечно большое линейное возрастание частоты срабатывания при линейном увеличении входного тока, что возможно только в абсолютно идеальных условиях без утечек.

Поэтому модель была уточнена введением рефрактерного периода tref, который ограничивает частоту срабатывания, задерживая срабатывание на некоторое время после достижения потенциала действия. Частота срабатывания в этом случае может быть описана следующей формулой:

Недостаток этого подхода заключается в проявлении независимой от времени способности запоминания. Если модель получает некоторый заряд, недостаточный для срабатывания, она будет хранить его до следующего подзаряда. Если же дополнительного подзаряда не произойдёт – напряжение будет сохраняться вечно, что явно не соответствует процессам, наблюдаемым на реальной мембране.

Метод «интегрировать-и-сработать» с утечками

Исправить недостаток вечной памяти позволило введение концепции утечки. Метод моделирует имитацию диффузии ионов, происходящую в мембране в случае недостижения условий для генерации потенциала действия. Улучшенная подобным образом модель может быть описана следующей формулой:

где Rm – значение электрического сопротивления мембраны. Теперь, чтобы сгенерировался потенциал действия, значение тока на входе должно превысить некоторый порог Ith = Vth / Rm. Иначе происходит утечка, аннулируя любые изменения потенциала. Частота срабатывания принимает следующий вид:

что сходится с предыдущей моделью (без утечки) для больших величин тока.

<p>Модель Ходжкина – Хаксли</p>

В модели предложенной Ходжкиным и Хаксли, введённая ранее зависимость напряжения от тока доводится до зависимости напряжения от многих входных сигналов.

Они вводят новую эквивалентную электрическую схему нервного волокна. В ней уже учтены внутренние источники токов Enи {\displaystyle E_ {L}} EL и, в отличие от кабельной теории, нет необходимости в индуктивности.

В схеме каждый компонент возбуждаемой клетки имеет свой биофизический аналог. Внутреннему липидному слою клеточной мембраны соответствует электроёмкость ({\displaystyle C_ {m}} Cm). Потенциал-зависимые ионные каналы отвечают за нелинейную электрическую проводимость ({\displaystyle G_ {n}} gn), где {\displaystyle n} n – отдельный вид ионных каналов) – это означает, что проводимость является потенциал-время-зависимой величиной.

Рисунок 42. Эквивалентная электрическая схема нервного

волокна Ходжкина и Хаксли

Перейти на страницу:

Похожие книги

Психология стресса
Психология стресса

Одна из самых авторитетных и знаменитых во всем мире книг по психологии и физиологии стресса. Ее автор — специалист с мировым именем, выдающийся биолог и психолог Роберт Сапольски убежден, что человеческая способность готовиться к будущему и беспокоиться о нем — это и благословение, и проклятие. Благословение — в превентивном и подготовительном поведении, а проклятие — в том, что наша склонность беспокоиться о будущем вызывает постоянный стресс.Оказывается, эволюционно люди предрасположены реагировать и избегать угрозы, как это делают зебры. Мы должны расслабляться большую часть дня и бегать как сумасшедшие только при приближении опасности.У зебры время от времени возникает острая стрессовая реакция (физические угрозы). У нас, напротив, хроническая стрессовая реакция (психологические угрозы) редко доходит до таких величин, как у зебры, зато никуда не исчезает.Зебры погибают быстро, попадая в лапы хищников. Люди умирают медленнее: от ишемической болезни сердца, рака и других болезней, возникающих из-за хронических стрессовых реакций. Но когда стресс предсказуем, а вы можете контролировать свою реакцию на него, на развитие болезней он влияет уже не так сильно.Эти и многие другие вопросы, касающиеся стресса и управления им, затронуты в замечательной книге профессора Сапольски, которая адресована специалистам психологического, педагогического, биологического и медицинского профилей, а также преподавателям и студентам соответствующих вузовских факультетов.

Борис Рувимович Мандель , Роберт Сапольски

Биология, биофизика, биохимия / Психология и психотерапия / Учебники и пособия ВУЗов