Возможно, такая схема и работала бы в идеальных условиях, где нет потерь, так почти бесконечно распространялась бы волна от брошенного в океан камня. В реальных же условиях существуют утечки и другие явления, приводящие к тому, что на каждом следующем участке аксона реполяризация будет уменьшаться и бегущая волна постепенно затухнет. И это не единственная проблема.
Возник ряд сложных и до поры до времени неразрешимых вопросов:
– Почему амплитуда нервного импульса не уменьшается в процессе распространения (НИ не затухает)?
–Как восстанавливается исходный потенциал на мембране после прохождения НИ?
Как проходят ионы натрия и калия через мембрану?
В результате Ходжкин и Хаксли, предложили максимально полное на тот момент биофизическое описание потенциала действия, хотя методы исследования молекулярных механизмов нервного импульса стали доступными только в 80-х годах XX века.
Модели подобные Модели Ходжкина – Хаксли были созданы впоследствии и для других электрохимически возбуждаемых клеток – например, для сердечных миоцитов. И вот что примечательно, во многих русскоязычных источниках, все модели такого рода описывают как
Для того чтобы понять современное представление о распространении нервного импульса нам придётся сделать отступление и узнать кое-что про автоволновые процессы.
Автоволны
Автоволнами называют волны, распространяющиеся в активных средах, т.е. в средах с распределёнными запасами энергии. Простейшим примером активной среды является бикфордов шнур. Ещё Лудимар Герман предложил на рубеже XIX—XX веков этот пример для вероятного описания нервного импульса. В случае бикфордова шнура запасённая в нём химическая энергия в процессе горения расходуется на розжиг соседних ещё не сгоревших участков шнура. В результате возникает волна горения, распространяющаяся вдоль шнура. Подойдут в качестве примера и падающие костяшки домино, и распространяющийся степной пожар.
Обобщая можно сказать, что автоволны представляют собой самоподдерживающиеся сигналы, которые запускают процессы локального высвобождения запасённой в среде энергии, затрачивающейся на запуск аналогичных процессов в соседних областях.
Мы рассмотрели, пример в котором распространяющийся фронт пламени необратимо переключает её в «сгоревшее» состояние. Особый интерес для исследователей представляют так называемые
Разберём пример активных сред с восстановлением: горелку с медленно подводящими топливо фитилями. Представим себе горелку, устроенную следующим образом. В листе металла на близком расстоянии друг от друга просверлены отверстия, в которые вставлены полосы асбеста. Концы этих полос погружены в ванну с густым маслом. Асбест не горит, но когда он пропитывается маслом, то представляет собой фитиль, который можно поджечь. Скорость горения асбестового фитиля, пропитанного маслом, выше скорости поступления горючего вещества (масла). Поэтому фитиль через некоторое время погаснет. После этого за счёт диффузии он вновь пропитается маслом, и его вновь можно поджечь и т. д. Таким образом, фитиль может находиться в трёх состояниях: горение; пауза (рефрактерный период), когда засасывается масло; готовность вновь вспыхнуть после поджога (стадия покоя). Если в такой демонстрационной горелке поджечь один из фитилей, то от него загорится соседний. Первый фитиль вскоре погаснет (выгорит масло) но к этому времени по горелке уже побежит фронт пламени. Так технически остроумно была реализована активная среда с восстановлением: каждый её элемент (фитиль) может в отличие от бикфордова шнура вспыхнуть не один, а сколько угодно раз. Отметим, что повторный поджог можно осуществить не только от внешнего источника, но и пламенем, подошедшим по среде. Для этого достаточно линию фитилей, вдоль которой бежит пламя, замкнуть в кольцо, и пламя начнёт вращаться по ней [44].
Распространяющийся по аксону импульс также является автоволной; он представляет собой электрохимическую волну перехода между двумя состояниями: покоя, когда разность потенциалов на мембране волокна велика (приблизительно – 0.07 В), и активного состояния – возбуждения, когда разность потенциалов мала (около +0.02 В). При распространении нервного импульса в каждой точке возбудимой мембраны расходуется энергия, исходно запасённая в виде неравномерных концентраций ионов калия и натрия по обе стороны мембраны.
После прохождения нервного импульса мембрана остаётся деполяризованной и неспособной к следующему возбуждению (рефрактерный период). Чтобы восстановить возбудимость клетки, необходимо восстановить исходные потенциалы, то есть восстановить исходную концентрацию ионов (потенциал покоя).