Сужающиеся сосуды
Какой бы ни оказалась формула определения скорости нервного импульса, накопленных наблюдений хватает для утверждения – чем тоньше сосуд, тем меньше скорость. Тогда, следуя закону сохранения энергии придётся допустить в сужающихся нервных волокнах, изменение либо длительности импульса, либо его амплитуды. Но потенциал действия не изменяется, он либо есть, либо его нет. Остаётся длительность. Или всё-таки давление? И тогда можно даже допустить возможность гидроудара в терминали аксона. Какой простой способ для объяснения выброса нейромедиатора!
Возрастание амплитуды нейротона при приближении к терминали может значительно влиять на передачу его к следующей клетке. Возможно настолько, что иногда не потребуется никаких ни химических, ни электрических синапсов для его дальнейшего распространения.
Если же волокно расширяется в направлении распространения нейротона, то его амплитуда и скорость должны уменьшаться, вплоть до прекращения эффекта потенциала действия. И это подтверждается практическими исследованиями. Оказалось, что при расширении волокна гигантского аксона кальмара в 6 раз потенциал действия не может пройти через это расширение (но, возможно, нейротон проходит, просто мы не наблюдаем эффекта ПД). Наверное, поэтому мы всегда говорим о распространении ПД в аксоне и никогда об этом явлении на мембране в районе сомы клетки.
Официальное объяснение изменения скорости нервного импульса при распространении по волокнам, меняющим размер своего сечения, базируется на таких чисто электрических свойствах мембраны как входное сопротивление и ёмкость. То есть объяснение не через физические процессы, а через математическую модель.
Кто бы исследовал зависимость параметров нервного импульса от диаметра волокна в сужающихся волокнах.
Солитонная модель
Джордж Рассел не только был первооткрывателем солитонов, он установил и некоторые их свойства. Во-первых, заметил, что такая волна движется с постоянной скоростью и без изменения формы [64]. Во-вторых, нашёл зависимость скорости V этой волны от глубины канала h и высоты волны a, где g – ускорение свободного падения (исследования проводились в водных каналах).
,(2.1)
Солитонные модели завораживают своей оригинальностью и новизной, им приписывают едва ли не мистические свойства, и они очень похожи на нервные импульсы.
Так и хочется привязать солитонные модели к нервным импульсам. Красиво, современно и наконец модно. И такие попытки делались и даже не один раз. Например, рассматривались варианты описания распространения самого (электрического) потенциала действия как солитона. Или изменение агрегатного состояния липидного слоя (клеточной мембраны) с упругого на желеобразное в результате действия акустических солитонов.
Как было бы здорово применить уравнение Кортевега – де Фриза для бегущей волны. Именно она могла бы дать объяснение и постоянства скорости волны и её сравнительно малой величины.
Или волновое уравнение – линейное гиперболическое дифференциальное уравнение в частных производных, описывающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах.
Или просто применить накопленные знания об ударных волнах, которые к слову так сложны, что понимают их только специалисты по гидродинамике.
Интересен вариант, предложенный Хаймбургом и Эндрю Джексоном.
Солитон, является решением уравнения в частных производных:
где t – время, x – положение вдоль нервного аксона, Δ ρ – изменение плотности мембраны под влиянием потенциала действия, c 0 – скорость звука нервной мембраны, p и q описывают природу фазового перехода и тем самым нелинейность упругих постоянных нервной мембраны.
Параметры c0, p и q определяются термодинамическими свойствами нервной мембраны и не могут регулироваться. Они должны быть определены экспериментально. Параметр h – описывает частотную зависимость скорости звука в мембране (дисперсионное соотношение).
Вышеупомянутое уравнение не содержит никаких параметров подбора (в отличие от модели Ходжкина – Хаксли).
Анализируя предложенное уравнение, можно заметить, что Хаймбург и Джексон, рассматривали в качестве солитона волну распространения изменений плотности мембраны (Δ ρ).
Первичное возбуждение. Рецептор – нейрон?
Следующий фундаментальный вопрос – как возбуждается нейротон? Для существующей теории Ходжкина – Хаксли было найдено электрохимическое объяснение. Казалось бы, тут всё просто, есть рецепторы – такие образования, способные воспринять энергию раздражения и трансформировать её в электрический (химический) нервный сигнал. Рецептор выбрасывает в синаптическую щель нейромедиатор, что вызывает скачок потенциала на мембране нейрона.
Рецепторы кожи, например, обеспечивают три типа чувствительности. Это – тактильная, температурная и болевая чувствительности. Остановим своё внимание на самом распространённом – первом типе.