Читаем Нейротон. Занимательные истории о нервном импульсе полностью

а – величина набухания клеточной мембраны, (0,5 нм, можно полагать, что a <

d – диаметр нервного волокна – (100—1000 мкм для немиелинизированного и 1—20 мкм для миелинизированного волокна).

Под действием растягивающей (или сжимающей) силы изменяются не только продольные, но и поперечные размеры мембраны. Если сила растягивающая, то поперечные размеры – уменьшаются. Для учёта этого фактора вводится коэффициент Пуассона. Он зависит только от материала рассматриваемого тела. Модуль Юнга и коэффициент Пуассона полностью характеризуют упругие свойства изотропного материала.

В отличие от формулы Моенса-Кортевега здесь не учитывается толщина мембраны, она примерно одинакова для всех клеток. И второе – исправлена зависимость от диаметра волокна на обратную.

Формула 2.1 прекрасно подходит ля описания немиелинизированного нервного волокна.

Доказано. Проводимость нервов новорождённого ребёнка ниже, чем у взрослого в два раза и скорость проведения возбуждения составляет около 50% от таковой у взрослых. Проведение возбуждения по нервным волокнам «плохо изолировано».

В процессе взросления организма нервные волокна миелинизируются. Это приводит к тому, что скорость распространения потенциала действия растёт. У детей она возрастает до показателей взрослого человека к 5—9 годам для разных типов нервных тканей.

Миелинизацию можно рассматривать как «армирование» нервного волокна, которое приводит к увеличению модуля упругости мембраны – Е и, следовательно, к увеличению скорости нервного импульса.

Попробуем учесть этот фактор путём введения специального коэффициента. В простейшем случае можно использовать в качестве такового отношение длины участка, покрытого миелином – L, и длины перехвата Ранвье – l.

,(2.3)

L – по данным разных источников расстояние между перехватами Ранвье 0,2 – 2,5 мм.

– длина перехвата Ранвье 1—2 мкм.

В большинстве случаев, для миелинизированного волокна этот коэффициент близок к 1.

Но главное – требуется подстановка другого значения модуля Юнга (большего на значение этого показателя для миелина, покрывающего клетку) – Em.

В результате конечная формула для определения скорости нервного импульса будет выглядеть так:

Расчёты показали удовлетворительное соответствие с экспериментальными данными для: 1) немиелинизированных нейронов и 2) миелинизированных нейронов с малыми диаметрами. А вот для миелинизированных волокон большого диаметра выявились значительные отклонения от экспериментальных (в сторону уменьшения скорости).

И это не удивительно, полученная формула применима для линейных процессов. В случае же рассмотрения процесса как солитона или ударной волны следовало бы учесть нелинейную зависимость её скорости от длительности и амплитуды (вспомним пример цунами).

Примечание. Почему не учитывается соотношение миелинизированных и немиелинизированных участков аксона сторонниками сальтаторного проведения? Вероятно, потому, что пришлось бы объяснить: почему скорость возрастает примерно на один порядок, а не на четыре. Ведь отношение длин шванновской клетки и перехвата Ранвье составляет примерно 20 000.

PS. Ложка дёгтя. Через модуль Юнга вычисляют скорость звука в веществах по формуле:

Получается я всего лишь определил скорость звука в мембране с поправками, коэффициентами и эмпирически увязанный с диаметром аксона?

Да, но формула (2.5) используется и для определения скорости ударной волны при условии, что модуль упругости стенки трубы стремится к бесконечности. А в нашем случае обязательно нужно учесть упругое расширение стенки мембраны!

Такая формула существует и успешно применяется в гидродинамике для исследования ударных волн:

Ес – модуль упругости сомы,

d – диаметр аксона,

Еm – модуль упругости мембраны,

h – толщина мембраны.

Что ж, значит уравнение скорости нервного импульса продолжает оставаться тайной. И возможно ещё ждёт своего нобелевского лауреата.

Зачем нужна формула скорости нервного импульса? Разве недостаточно экспериментальных измерений? На мой взгляд важна не сама формула, а объяснение физического смысла процесса и его математического описания. А в формуле его, увы, нет. И если принять за основу правильность всего математического аппарата созданного наукой, то приходится сомневаться в правильности современной трактовки физических процессов при распространении нервного импульса.

Перейти на страницу:

Похожие книги

Психология стресса
Психология стресса

Одна из самых авторитетных и знаменитых во всем мире книг по психологии и физиологии стресса. Ее автор — специалист с мировым именем, выдающийся биолог и психолог Роберт Сапольски убежден, что человеческая способность готовиться к будущему и беспокоиться о нем — это и благословение, и проклятие. Благословение — в превентивном и подготовительном поведении, а проклятие — в том, что наша склонность беспокоиться о будущем вызывает постоянный стресс.Оказывается, эволюционно люди предрасположены реагировать и избегать угрозы, как это делают зебры. Мы должны расслабляться большую часть дня и бегать как сумасшедшие только при приближении опасности.У зебры время от времени возникает острая стрессовая реакция (физические угрозы). У нас, напротив, хроническая стрессовая реакция (психологические угрозы) редко доходит до таких величин, как у зебры, зато никуда не исчезает.Зебры погибают быстро, попадая в лапы хищников. Люди умирают медленнее: от ишемической болезни сердца, рака и других болезней, возникающих из-за хронических стрессовых реакций. Но когда стресс предсказуем, а вы можете контролировать свою реакцию на него, на развитие болезней он влияет уже не так сильно.Эти и многие другие вопросы, касающиеся стресса и управления им, затронуты в замечательной книге профессора Сапольски, которая адресована специалистам психологического, педагогического, биологического и медицинского профилей, а также преподавателям и студентам соответствующих вузовских факультетов.

Борис Рувимович Мандель , Роберт Сапольски

Биология, биофизика, биохимия / Психология и психотерапия / Учебники и пособия ВУЗов