Наше зрение устроено странно. Желтый — это определенный спектральный диапазон (длина волны — от 565 нм до 590 нм). Но наш глаз воспринимает смесь двух других спектральных диапазонов (красный — длина волны 620–740 нм и зеленый — 500–565 нм) как третий, как что-то среднее. Этим средним и будет желтый. Повторим: так устроено наше зрение.
Но то, что мы видим, зависит не только от свойств нашего глаза. Мы, если не смотрим на Солнце, видим либо отраженный, либо рассеянный свет, чаще — отраженный от поверхности того предмета, на который смотрим.
Например, посветили белым (солнечный свет), и все цвета, кроме желтого, поверхность поглотила — значит, видим желтую поверхность.
Если другая поверхность поглотит все цвета, кроме синего и красного (последние, соответственно, отразит), мы опять увидим желтую поверхность — вспомним: синий плюс красный видно как желтый.
Но вот если осветить первую поверхность с помощью света нашего светодиода, что мы увидим? Черную поверхность, ведь в составе света не было настоящего желтого — того, который наш предмет отражает! А вторую поверхность мы увидим такой же желтой, как и прежде, ведь синий и красный в нашем фонарике в наличии.
Что это означает? Неправильную цветопередачу. Светло-то светло, да ничего не видно. Если сделать из такой лампы яркую (уж это — пожалуйста!) автомобильную фару, то в свете таких фар вы рискуете не увидеть пешехода, переходящего дорогу перед вашим автомобилем.
Читатель может возразить: что-то я все-таки увижу. Ну, неправильные будут цвета, но дорога — не картинная галерея, как-нибудь разберемся. Ошибка, причем грубая! И вот почему.
Вспомните принцип маскирующего камуфляжа. Хотите, представьте форму солдата, хотите шкуру тигра или леопарда — принцип один. И дело опять в особенностях нашего зрения. Мы узнаем образ того, что мы видим по границе этого образа, так устроено наше зрение (глаза плюс мозги). Чтобы «увидеть», достаточно одной границы: вспомните замечательные карикатуры Херлуфа Битструпа — ничего, кроме контура, но все узнаваемо. А вот если контур убрать, а именно это делают камуфлирующие пятна или полосы, увиденное сольется с фоном. При неправильной цветопередаче велик риск того, что контур распадется, — перед глазами будут не воспринимаемые нами «камуфляжные» пятна. Вот так: проверили фонарик — светит хорошо, ярко; посветили — и ничего не увидели!
Но наш главный риск не в том, что мы в неверном освещении проглядим что-то важное. Наш главный риск — не увидеть те сюрпризы, которые таит в себе все новое. И не надо полагаться на очевидность — она-то и подведет, особенно в области нано.
Риск применения нанотехнологий по внетехнологическим причинам.
Риск технологической подмены — замещающая нанотехнология несет те же риски, что и замещаемая.
Риск неправильной цветопередачи как пример риска искажения восприятия.
Риск очевидности — не надо полагаться на очевидность — она-то и подведет.
Глава 2
Чудеса структуры
2.1. Фрактальная симфония
— Разрешите доложить, капитан: полный штиль, барометр показывает ясно, температура наружного воздуха двенадцать градусов по Цельсию, произвести измерение глубины и температуры воды не представилось возможным за отсутствием таковой.
… — То есть как это за «отсутствием»? — спрашиваю. — Куда же она девалась?
В предыдущей главе мы говорили о материалах и о рисках, с ними связанных. Было отмечено, что все начинается с материала. Однако последние примеры (со сверхпроводимостью, с материалами для водородной энергетики) показали, что важнейшим в материалах была их структура. Нанотехнологии — это тот случай, когда материал уходит на второй план, а на первый план выходит структура.
Действительно, мы не просто имеем дело с атомами — с ними мы имеем дело всегда, ведь из них состоят самые привычные вещи, — мы эти атомы размещаем так, как нам необходимо. Такое размещение и есть структура. При этом структура нано часто особенная. В привычном нам кристалле, например соли, тоже есть четкая структура — бесконечная череда повторяющейся во все стороны кристаллической решетки. Но не о такой «монотонной» структуре речь. Структуры нано более сложные.
Показательным примером такой особенной структуры являются так называемые дендримеры. Это как раз тот материал, который применяется для «губок» водородной энергетики.