Накопленная энергия (значительная потенциальная энергия горения) в таком материале превращает его в потенциальную — и надо сказать, мощную, — взрывчатку. Но это далеко не все. Водород — странное вещество. Он способен протекать сквозь стенки многих металлов. Объясняется это так. Водород хорошо растворим в ряде металлов, прежде всего таких, как никель, платина или палладий. Да и сталь не составляет исключения. (Материалы, удерживающие водород, все же есть. Таковым, например, является серебро.) Собственно наша наногубка, впитывающая водород, — это то же самое. Раньше для этих целей использовали палладий. Только в нашей наногубке можно растворить водорода намного больше. Так вот, с растворимостью водорода в металлах и связана его способность проходить через них. Ведь это одно и то же! Обычная кухонная губка пропускает воду потому, что может ее впитывать и отдавать. Такой процесс проникновения молекул одного вещества между молекулами другого называется диффузией.
Следует иметь в виду, что диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом. Иными словами, водород — агрессивная среда. Из школьного учебника химии мы помним, что кислота — это то, что легко образует свободный ион водорода[23] — именно он и оказывает то разрушительное действие, которое мы связываем с кислотой. А тут — как минимум атомарный водород в кристаллической решетке. Как эта среда, будучи концентрированной до плотностей, сравнимых с плотностью твердого тела, ведет себя, мы еще до конца не знаем.
Не знаем и того, как такой материал, такая среда поведут себя при контакте с другими средами и веществами, с другими агентами — даже такими, контакт которых с водородом нами не предполагался. А если предположить массовый характер использования водородной энергетики — в автомобилях и других машинах, на судах, на самолетах и ракетах, в домашних роботах-андроидах и приборах, в компьютерах и средствах электронной коммуникации, — такие контакты неизбежны. С мыльной пеной детских «пузырей», со спиртом, содержащимся в алкогольных напитках, — словом, со всем тем, что окружает нас в быту. С разнообразными фармакологическими соединениями в медицинском учреждении, с веществами на производстве и в химической лаборатории, в мобильных лабораториях криминалиста и специалиста по контролю за окружающей средой — со всем тем, что мы используем в своей производственной деятельности. Кроме того, с кислотными дождями, не ко времени выпавшими, с песком, принесенным самумом, и снегом сибирской вьюги, с нещадно палящим солнцем посреди азиатской степи — со всем тем, что от нас не зависит и нас не спрашивает.
Водородная энергетика дает прекрасный пример и того, что в новом деле, в новых технологиях мы можем пропустить важное, не только неизвестное нам, но и
Все мы знаем перекись водорода, вернее, слабенький водный раствор перекиси водорода. Так вот, хорошо известно, что концентрированные водные растворы перекиси водорода взрывоопасны. А кто сказал, что при горении водорода — ведь водородная энергетика предполагает сжигание водорода — никогда не может сложиться условий, при которых образуется не окисел водорода (вода), а его перекись? И наши выхлопы, которые мы считали экологически чистыми, вдруг окажутся вовсе не такими безобидными. И даже если образовавшиеся капельки сконденсированного пара содержат недостаточно перекиси водорода, чтобы быть взрывоопасными, нельзя забывать и про то, что концентрированные растворы перекиси при попадании на кожу, слизистые оболочки и в дыхательные пути вызывают ожоги.
Как известно, бензиновый двигатель может быть в разной степени экологически опасным (или безопасным). То же может быть справедливо и для водородного двигателя. Пожухлая листва городских деревьев не исключена и на фоне лозунгов об экологичности.
Нанотехнологии делают водородную энергетику возможной. Но вот возможные негативные последствия такой энергетики могут быть с нанотехнологиями прямо не связаны.
Из чего производят водород, требующийся в промышленных количествах? Ответ прост — из воды. Транспортировать водород по причинам, только что нами названным, трудно. Транспортировать водородные «аккумуляторы» не эффективно. Значит, придется транспортировать воду, что делает актуальным строительство трубопроводов, или пользоваться местными источниками.
То, что вода — ценнейший ресурс, мы уже понимаем, но, видимо, не до конца. Говоря о водородной энергетике и роли в ней воды, ни в коем случае нельзя забывать о так много и настойчиво обсуждаемом сегодня сланцевом газе.
Добывать сланцевый газ можно только там, где есть вода, — рядом с реками и озерами. Ее закачивают в скважину, чтобы использовать технологию гидровзрыва. Создание одной скважины требует до 4000 тонн воды.