Читаем Мысли о мыслящем полностью

Представим, что каждый элемент x множества положительных вещественных чисел отображается точкой на числовой прямой. Каждому числу x, большему 1, поставим во взаимно-однозначное (биективное) соответствие число 1/x. Тогда интервал единичной длины (0, 1], рассматриваемый как множество точек, окажется больше интервала (1, ∞), поскольку всем точкам последнего будет соответствовать какая-то точка интервала (0, 1], и вместе с тем интервалу (0, 1] принадлежит точка 1, которой нет соответствия на интервале (1, ∞). Выражаясь проще: 1 > ∞ - 1. Если мы спроецируем таким же образом точки интервала (1, 2] на интервал [½, 1), то получим, что 2 - 1 = 1 - ½, т. е. 1 = ½ или 1 = 2 или 1 = 0 (в зависимости от преобразования равенства); если проделаем аналогичную операцию с интервалом (2, 4], то получим 1 = ⅛ или 1 = 8 и т. д. Эти абсурдные результаты — очевидное следствие того, что все рассматриваемые множества точек являются континуальными. С ними нельзя производить подобные операции. С другой стороны, сами по себе эти операции математически корректны и опираются на эмпирическую реальность. А вот понятия бесконечности и точки (которую можно представить как частное выражение понятия бесконечности: предел бесконечного деления) имеют к эмпирической реальности весьма косвенное отношение — это лишь экстраполяции нашего разума (в природе нет известных нам примеров актуальной бесконечности). Воображаемые точки не имеют размера и при этом занимают какое-то место в пространстве (имеют свои координаты) — конечно, такие парадоксальные объекты не могут считаться реальными сущностями. Поэтому определять с их помощью местоположение некоего простого (несоставного) материального объекта было бы неверно. Такие объекты сами могли бы рассматриваться как точки, образующие пространство, но уже не воображаемые, а реальные.

Все это, кажется, свидетельствует против антитезиса Канта (а заодно и апорий Зенона) и против представления о непрерывности пространства и материи. Кроме того, кажется очевидным, что в случае непрерывности материи было бы невозможно ее движение, перемещение, — ведь для него не будет свободного пространства (это верно и в том случае, когда под движениями материи понимаются флуктуации физического вакуума).

Напротив, доказательство тезиса кантовской антиномии выглядит весьма убедительным (вспомним также доводы Гильберта и Бернайса). Но что тогда придает целостность дискретной материи? К тому же, хоть движение и невозможно в заполненном пространстве, как оно возможно в дискретном, пустом?

Что может заставить переместиться объект, находящийся в абсолютной пустоте, на который не оказывается в данный момент никакого внешнего воздействия? Мы, конечно, можем предположить, что этот объект имеет свою внутреннюю структуру, которая и вынуждает его перемещаться (по инерции, сохраняя полученный ранее импульс, или даже самостоятельно). Но этим мы лишь перенесем фокус рассмотрения с самого объекта на составляющие его элементы, перемещение которых в пустоте точно так же нужно будет объяснить. Что же нам остается? Продолжать выбранный путь объяснения ad infinitum? Тогда мы вернемся к представлению о непрерывности материи.

А как объяснить сам факт сохранения положения или упорядоченного движения (по некой траектории) объекта в пустоте? Пустота, то есть отсутствие материи, вообще говоря, не есть что-то существующее. Она не состоит из «точек», в которых объект может покоиться или через которые он может проходить. Другими словами, пустота не может выполнять роль «субстрата», поддерживающего материальные объекты. В противном случае она тоже должна быть чем-то материальным, вступающим во взаимодействие с объектами. Таким образом, мы вновь приходим к понятию непрерывной материи.

Итак, непрерывность материи представляется не менее обязательным условием существования мира, чем ее дискретность. Как можно примирить две эти противоположные позиции?

На первый взгляд, решением могла бы стать идея, примененная в теории бран (М-теории): физическая материя в своей основе подобна многомерной мембране. Допустим, что Вселенная — это трехмерная поверхность, вибрирующая (осциллирующая) в десятимерном, как в М-теории, пространстве. Получится, что материя нашего трехмерного мира непрерывна и вместе с тем в ней существуют дискретные волны (образующие материальные объекты), которые порождаются ее колебательным движением в других пространственных измерениях. Но это означает, что обозначенная выше проблема перемещения теперь относится к этим загадочным иным измерениям. То есть гипотеза о многомерности пространства вовсе не снимает вопрос о проблематичности движения материи в пустоте. Кроме того, не вполне ясен физический смысл «свернутых» пространственных измерений (помимо известных нам трех), в которых происходят осцилляции.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия