Чтобы разъяснить свои взгляды читателям, а может быть, и самим себе, многие исследователи составляли анатомические схемы нервной системы, в частности рефлекторных дуг спинного мозга. К ним не прилагалось никаких метафор – это не были «электрические схемы» (данная аналогия укрепилась только спустя десятилетия), – но были добавлены стрелки, указывающие, каким образом различные нервные центры влияют друг на друга.
Ученый Шеррингтон считал, что животное – это машина, которую можно понять, исследуя ее составляющие.
Например, в 1886 году Шарко представил рисунок, демонстрирующий различные центры, которые задействуются, когда мы слышим, говорим, видим или пишем слово cloche (колокол). Связи между различными «центрами», включая тот, что находится в верхней части фигуры и обозначен «ИЦ» (интеллектуальный центр), были в значительной степени воображаемыми. Но поскольку такого рода схемы предполагали, на каком уровне мог существовать тот или иной дефект, они также служили руководством для смелых или безрассудных хирургов, пытающихся проникнуть в мозг пациентов, и указывали, где искать определенные феномены, что вырезать, а что нет. Десятилетием ранее Ферриер также использовал стрелки, чтобы указать «центростремительное или центробежное направление», то есть идут ли нервные волокна наружу от центра или, наоборот, от периферии к центру [46]. В конечном счете, однако, все зашло немного дальше упрощенной анатомической схемы. Здесь не было ничего, что можно использовать для построения модели или гипотезы о том, что на самом деле происходит в указанных центрах или что движется по центростремительным и центробежным нервам.
В схеме Шеррингтона, составленной более чем через тридцать лет после рисунка Ферриера, добавлялось торможение, включая знаки «плюс» и «минус» и попытки описать рефлекторную функцию (в данном случае коленный рефлекс) в почти алгебраических терминах:
«Если мы обозначим возбуждение как конечный эффект знаком „плюс”, а торможение как конечное проявление знаком „минус”, то такой рефлекс, как чесательный, может быть назван рефлексом двойного знака, поскольку в нем развивается конечное возбуждение, а затем конечное торможение даже во время действия возбуждающего раздражителя» [47].
Применить схему к реальной нервной деятельности, трансформировав рисунок в обоснованную модель функции мозга, в то время было невозможно. Несмотря на то, что электростимуляция лежала в основе многих открытий последних десятилетий XIX века, она, как правило, рассматривалась как более тонкая и точная форма раздражения, которая может выявить определенную функцию. Чтобы тайное стало явным, чтобы нервное действие было правильно понято, а знание об основах мозговой деятельности формировало представления о том, как работает мозг, ученые сначала должны были понять, из чего на самом деле состоит этот орган.
7
Нейроны. Рубеж XIX–XX веков
Одним из величайших научных достижений XIX века стала клеточная теория – осознание того, что все организмы состоят из клеток и что клетки, в свою очередь, могут появляться только из других клеток. Осознание, демонстрирующее, что жизнь не возникает спонтанно. Биология нашла свою фундаментальную частицу. Одно из доказательств, которое привело к быстрому принятию этой теории, было получено в 1830-х годах чешским анатомом Яном Пуркинье[130], применившим усовершенствованный микроскоп для изучения тонких срезов человеческого мозжечка [1]. Вместе с одним из своих учеников, Габриэлем Валентином, Пуркинье обнаружил, что мозжечок состоит из «шариков» – грушеобразных структур, полных крошечных пятен. Эти шарики в совокупности составляли слой, который располагался чуть выше ряда длинных волокон. В 1838 году один из учеников Иоганна Мюллера, Роберт Ремак[131], показал, что каждое из данных волокон связано с одним из шариков. Это были клетки мозга.
Все организмы состоят из клеток, и они, в свою очередь, могут появляться только из других клеток.