Математическая теория (основанная Риманом), описывающая не полностью исчезающий остаток хроногеогравитационного поля g в свободно падающей системе отсчета, привела к возникновению математического объекта, содержащего 20 компонент, – тензора Римана – Кристоффеля R. Это своего рода обобщение «приливного тензора»{81} ньютоновской гравитации дает наиболее полноценное описание истинной локальной деформации искривленного пространстве-времени. Однако этот тензор не мог быть искомым математическим объектом, который требовался Эйнштейну и который должен был иметь лишь 10 компонент, как и его источник T. После долгих колебаний и сомнений Эйнштейн понял в ноябре 1915 г., что существует только один способ построения объекта с 10 компонентами исходя из R, описывающего пространственно-временную деформацию и удовлетворяющего как принципу общей теории относительности, так и закону сохранения энергии и импульса. Этот 10-компонентный объект, который мы обозначаем D(g), называется «тензором Эйнштейна»{82}. Таким образом, после восьми лет исследований ему, наконец, удалось написать «уравнения гравитации Эйнштейна»: D(g) = κT, где 10 величин в левой части уравнения описывают (частично) локально измеримую деформацию пространственно-временной хроногеометрии, тогда как 10 величин справа содержат источник этой деформации – распределение напряжения и распределение импульса и массы-энергии. Как мы уже говорили, эти 10 уравнений, связывающих деформации в присутствии приложенных внутри среды напряжений, аналогичны базовым уравнениям, описывающим упругость не сильно деформированной среды.
Рисунок 9 иллюстрирует содержание уравнений гравитации Эйнштейна. Присутствие здесь массы-энергии представлено с помощью мировых линий (или пространственно-временных линий), которые оставляют частицы в пространстве-времени. Отметим «волокнистый» характер изображенного на рисунке распределения массы-энергии. Присутствие этого распределения приводит к деформации геометрии пространства-времени, изображенного посредством набора деформированных песочных часов.
Величина пространственно-временной упругости
Мы надеемся, что предложенный нами первоначальный образ на данном этапе стал более содержательным: пространственно-временная структура в образе желе и генерирующая деформацию материя в образе присутствующих в нем волокон. В завершение нам остается определить значение коэффициента κ, возникающего в уравнениях Эйнштейна и описывающего, как мы уже говорили, упругость пространственно-временного желе. Эйнштейн сумел определить этот коэффициент исходя из требования, что в некотором приближении 10 уравнений D(g) = κT воспроизводят ньютоновскую теорию тяготения с единственным гравитационным потенциалом, из которого следует сила, обратно пропорциональная квадрату расстояния. Он обнаружил, что κ = 8πG/c4, где G – гравитационная постоянная Ньютона, возникающая в силе притяжения F = Gmm’ / r² между двумя массами m и m’, разделенными расстоянием r.
Когда используются обычные единицы, принятые в теоретической физике и измеряющие расстояние в сантиметрах, время в секундах, а массу в граммах, можно найти, что численное значение упругости пространства-времени примерно равно 2 × 10–48, т. е. κ = 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 002! Откуда следует, что пространственно-временная упругость крайне мала или, эквивалентно, что жесткость пространства-времени, измеряемая как величина, обратная упругости, 1 / κ, чрезвычайно велика. Это объясняет, почему на протяжении тысячелетий можно было предполагать, что пространство и время являются «жесткими» структурами, не поддающимися никакому влиянию присутствия энергии или напряжений. Необходимо сосредоточить огромные плотности энергии или напряжения, чтобы добиться заметной деформации пространственно-временного желе.
Глава 4
Эйнштейновская Игра в Мир
Почему же играет большой Ребенок, которого Гераклит видел в космическом Времени (αιων), Ребенок, играющий в Мир?
– Хайдеггер. Принцип РазумаСмещение Меркурия, беседы со Сфинксом
Берлин, Германия, ноябрь 1915 г.