Читаем Мир по Эйнштейну. От теории относительности до теории струн полностью

Эйнштейн также рассчитал амплитуду гравитационных волн, испущенных движущимся распределением напряжения-массы-энергии. Он также понял, что эти волны сами по себе являются переносчиками энергии и импульса. Отсюда он вывел, что движущийся сгусток напряжения-массы-энергии испытывает потерю энергию в результате излучения гравитационных волн в бесконечность, и в первом приближении получил выражение для ее величины.

Долгое время считалось, что процесс, предсказанный и описанный Эйнштейном{86}, соответствует столь малому рассеянию энергии, что не может быть обнаружен в реальности. В самом деле, если мы попробуем оценить энергию излучения гравитационных волн, источник которых можно изготовить на Земле (например, цилиндр в несколько тонн, вращающийся с максимально возможной скоростью, при которой он еще не начинает разрываться), то получим ничтожно малые потери энергии. Ситуация изменилась только в 1970 г. с открытием нового астрофизического объекта, способного конденсировать огромную массу в относительно малом объеме.

В этом контексте особенно важным стало открытие американскими астрономами Расселом Халсом и Джозефом Тейлором в 1974 г. двойного пульсара PSR 1913+16. Речь идет о системе, состоящей из двух нейтронных звезд, вращающихся вокруг центра масс по сильно вытянутым эллиптическим траекториям. В такой системе потеря энергии на гравитационное излучение достаточна, чтобы получить эффект, доступный наблюдению. На деле лучший способ описать то, что было обнаружено, следующий. В ноябре 1915 г. Эйнштейн убедился, что в главном приближении общая теория относительности предсказывает взаимодействие между двумя массивными объектами (посредством деформации пространства-времени между ними), описываемое обычным законом тяготения Ньютона FНьютона = Gmm’/r². Однако уже в следующем приближении общая теория относительности предсказывает отклонения от закона Ньютона. Грубо говоря, эти отклонения зависят от отношения v/c между скоростью на орбите и скоростью света. Вычисления этих поправок весьма сложны. Первая поправка к закону Ньютона, пропорциональная квадрату отношения v²/c², была впервые получена{87} в 1917 г. После открытия двойных пульсаров стало ясно, что требуется значительное увеличение точности вычислений: вплоть до пятой степени отношения v/c.

Конечный результат вида FЭйнштейна = FНьютона (1 + v²/с² + v4/с4 + v5/с5) для эйнштейновского взаимодействия между двумя нейтронными звездами был получен{88} в 1982 г. Среди всех новых эффектов, входящих в эйнштейновское взаимодействие, слагаемые порядка v5/c5 играют особую роль. Расчеты показывают, что они отвечают за ту часть гравитационного взаимодействия, которая распространяется между двумя объектами со скоростью света. Другими словами, именно они отражают существование гравитационных волн. Изучение вклада этих слагаемых в движение пульсара показывает, что они служат причиной увеличения частоты обращения системы или, что то же самое, уменьшения периода обращения. Для двойного пульсара PSR 1913+16, чей орбитальный период порядка восьми часов, это уменьшение равно в соответствии с теорией Эйнштейна 67 миллиардным долям секунды за одно обращение. Благодаря очень точным наблюдениям, проводимым в течение нескольких лет, стало возможным измерить уменьшение орбитального периода PSR 1913+16, и результат хорошо совпал, с точностью в несколько десятых процента, с теоретическим предсказанием. Это совпадение – одно из самых красивых подтверждений теории Эйнштейна. Оно также стало первым подтверждением того, что деформации пространственно-временного желе распространяются (в данном случае между двумя нейтронными звездами) со скоростью света.

В 1960-х гг. к ученым, в частности к Джозефу Веберу, пришло понимание того, что возможно, в принципе, детектировать на Земле прибытие гравитационных волн, испущенных в далеких концах Вселенной. Гравитационная волна – это волна деформации пространственно-временной геометрии, распространяющаяся от источника со скоростью света. Поскольку пространственно-временное желе обладает огромной жесткостью, все мыслимые источники (включая самые мощные, такие как две сливающиеся черные дыры) создают крайне малые деформации пространственно-временной геометрии. Однако для лучшего понимания того, как могут выглядеть «волны деформации геометрии», мы последуем Георгию Гамову{89} и представим себе гравитационные волны такой большой амплитуды, чтобы человек мог их воспринимать непосредственно. На Земле мы привыкли использовать для описания окружающего пространства евклидову геометрию, где работает теорема Пифагора, притом для треугольников любого размера, и где сумма углов треугольника равна сумме двух прямых углов. Исходя из такой «недеформированной» или, как говорят, «плоской» ситуации, давайте проследим, как Гамов описывает внезапное прибытие гигантской волны деформации геометрии на британский морской курорт.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука