Читаем Мир по Эйнштейну. От теории относительности до теории струн полностью

На плоской поверхности, например на лежащем на столе листе бумаги, можно легко определить местоположение точки с помощью обычной прямоугольной сетки, какая используется в школьных тетрадках или на миллиметровой бумаге. Такую регулярную сетку уже невозможно реализовать на поверхности, имеющей всевозможные выпуклости и впадины. Чтобы зафиксировать любую точку на искривленной поверхности, мы, таким образом, используем два параметра, скажем x и y, которые больше не имеют простого смысла длины и ширины. Например, на поверхности Земли в качестве «первой координаты» x можно использовать долготу, а в качестве «второй координаты» y – широту. Следует отметить, что такие координаты можно использовать, даже когда земную поверхность невозможно аппроксимировать сферой: например, на возвышенности или в низине. При этом нет необходимости вводить третью координату (скажем, высоту над уровнем моря), поскольку двух первых координат (долготы и широты) будет достаточно, чтобы определить положение на Земле, а высота будет определяться некоторой функцией долготы и широты. Отсюда легко видеть, что если использовать сетку, определяемую долготой и широтой, на небольшой части поверхности Земли на склоне горы или ущелья, то эта сетка будет представлять собой деформацию привычной сетки из школьной тетрадки в клетку: поверхность по-прежнему будет разбиваться на ячейки двумя семействами линий, но каждая ячейка будет не квадратом, а чем-то вроде параллелограмма, точнее, ее стороны просто не будут равны друг другу и перестанут пересекаться под прямым углом.

Итак, локально можно сопоставить каждый небольшой фрагмент получившегося разбиения на ячейки с обычным разбиением на параллелограммы, сделанном на касательной плоскости. Обобщение теоремы Пифагора применительно к непрямоугольным треугольникам говорит нам, что квадрат расстояния между двумя узлами такой (плоской) сетки дается суммой квадратов разностей координат между двумя узлами и их удвоенным произведением. Чтобы определить квадрат расстояния между близкими точками вообще любой искривленной поверхности, точки которой фиксируются двумя координатами x и y, необходимо, таким образом, задать в каждой точке три величины: коэффициент перед квадратом dx² разности dx между первыми координатами двух точек, коэффициент перед квадратом dy² разности dy между вторыми координатами и коэффициент перед удвоенным произведением 2dxdy. [Мы рассматриваем математический предел, в котором точки бесконечно близки, отсюда символ d, обозначающий бесконечно малую разность.] Эти три коэффициента определяют геометрию (geometry) рассматриваемой поверхности и по этой причине обозначаются соответственно как gxx, gyy и gxy, где буква g напоминает нам, что речь идет о геометрии.

Во времена обучения в Цюрихском политехническом Эйнштейн высоко ценил курс Карла Фридриха Гёйзера, посвященный «инфинитезимальной геометрии» поверхностей. Гёйзер читал лекции по теории, разработанной знаменитым математиком Карлом Фридрихом Гауссом и фактически изучающей тот самый квадрат расстояния между бесконечно близкими точками, про который мы только что говорили. В связи с этим в 1912 г. Эйнштейн вспомнил, что геометрия «деформированной» (или неплоской) поверхности определяется с помощью трех величин gxx, gyy, gxy, заданных в каждой точке поверхности. Этот набор данных, определяющий для каждой точки поверхности значения трех величин gxx, gyy, gxy, называется «геометрическим тензором», а точнее, «метрическим тензором» g. Эйнштейн понял, что ему требуется обобщение этого понятия на случай, когда (двумерная) поверхность заменяется на (четырехмерное) пространство-время. Математик Бернхард Риман, студент Гаусса, уже обобщил теорию Гаусса для деформированных пространств произвольных размерностей. Однако Риман рассматривал исключительно случай пространств, которые локально, т. е. в окрестности каждой точки, напоминают обычное евклидово пространство. Другими словами, он изучал пространства, в которых геометрическое место точек, разделенных с данной центральной точкой малым значением квадрата расстояния ε², имеет форму деформированной (гипер)сферы, т. е. представляет своего рода «мяч для регби»{68}. Эйнштейн понял, что ему требуется обобщить теорию Римана на случай, когда геометрическое место точек, разделенных с данной центральной точкой малым (положительным) значением квадрата интервала ε², имеет форму деформированных песочных часов{69}.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука