В конце 1906 г. Эйнштейн все еще работал в патентном бюро и поэтому по-прежнему мог посвящать лишь немного свободного времени физике. Тем не менее у него было решающее преимущество перед большинством физиков – он был единственным, кто по-настоящему верил в квантование энергии материи. Это в некоторой степени компенсировало ему недостаток времени и давало возможность спокойно думать о всевозможных последствиях явления квантования не только в контексте излучения черного тела, но и других физических систем. Возможно, он вспомнил загадочные экспериментальные результаты, которые были получены среди прочего его профессором физики в Политехническом институте в Цюрихе. Генрих Вебер изучал «удельную теплоемкость» некоторых твердых тел и, в частности, алмазов. «Теплоемкостью» тела называется количество теплоты, которое необходимо сообщить этому телу для того, чтобы повысить его температуру на один градус Цельсия. Конечно, это величина пропорциональна массе рассматриваемого тела. Поэтому полезно рассматривать теплоемкость некоторого образца тела, содержащего определенное количество атомов (скажем, 6,022 x 10^2^3, которое называется «число Авогадро»). Мы будем называть эту последнюю величину «удельной теплоемкостью» рассматриваемого твердого тела.
В 1819 г. французские физики Пьер Дюлонг и Алексис Пти сделали поразительное открытие. Они обнаружили, что удельная теплоемкость большого количества простых элементов всегда одна и та же! Она равна примерно 6 калориям на один градус (и на один моль). Эта замечательная универсальность теплоемкости (простых) твердых тел нашла теоретическое объяснение 50 лет спустя в работах Людвига Больцмана. Объяснение Больцмана было основано на его последних результатах, касающихся статистической интерпретации теплоты. По сути, Больцман интерпретировал теплоту твердых тел как энергию вибрации каждого отдельного атома вокруг положения равновесия. В своих расчетах 1876 г., сделанных на основе предложенной им ранее статистической теории, он вывел зависимость между
Однако в 1876 г. было обнаружено, что некоторые твердые тела имели значительно меньшую удельную теплоемкость, чем 6 калорий на один градус. Это, в частности, относилось к бору, кремнию и алмазу (или графиту, который так же, как и алмаз, состоит из атомов углерода). В 1875 г. Вебер значительно прояснил данный вопрос, показав, что эти три исключения «возвращаются в общий ряд» при высоких температурах. Он экспериментально установил, что удельная теплоемкость зависит от температуры тела и, когда температура становится достаточно большой, приближается к тому самому простому универсальному значению, которое указывали Дюлонг и Пти. Тем не менее оставалось непонятным, почему при уменьшении температуры удельная теплоемкость этих трех материалов становится гораздо меньше, чем 6 калорий на один градус, предсказанных на основании «классической» статистической физики. [Здесь под
В ноябре 1906 г. Эйнштейн понял, что идея