Читаем Мир по Эйнштейну. От теории относительности до теории струн полностью

Уравнение E = hf, полученное Эйнштейном в марте 1905 г., имеет, возможно, даже более фундаментальное значение, чем уравнение E = mc^2, выведенное им в сентябре того же года. Тем не менее первое уравнение мало известно, тогда как второе знают все. Необходимо заметить прежде всего, что Макс Планк был первым, кто связал, еще в декабре 1900 г., частоту f излучения черного тела с количеством энергии E = hf. Тем не менее уравнение E = hf стало приобретать свой полноценный физический смысл лишь после выхода статей Эйнштейна в 1905 и 1906 гг. Именно по этой причине это уравнение часто называют уравнением Планка – Эйнштейна.

Вопреки обычному представлению, фигурирующему в основной массе научно-популярной литературы, Планк в 1900 г. никоим образом не утверждал, что энергия материи, образующей стенки печи (и тем более энергия света), должна быть физически «квантована» в единицах E = hf, т. е. может принимать лишь значения 0, hf, 2hf, 3hf, 4hf… Планк использовал E = hf, или то, что он назвал «элементами энергии», как вычислительный прием для придания смысла «количеству микроскопических состояний» материи печных стен. В общих чертах он использовал эти элементы энергии точно так же, как мы использовали в приведенном выше примере шахматную доску (с конечным числом клеток) для расчета количества возможных конфигураций блох, распределенных на некоторой площади. В конце концов, все, что имело значение в такой оценке, – это отношение между площадью, доступной в конечном состоянии, и начальной площадью. При этом сам размер элементарной клетки шахматной доски не входил в окончательный результат{120}. Однако Планк понимал, что результат его вычислений зависит от фактического размера «элементарной клетки», энергии E = hf, которую он использовал, хотя и надеялся на возможность в будущем придать вычислению некоторый смысл, оставаясь в рамках физических представлений своего времени, т. е. базируясь на представлениях об энергии вещества, принимающей всевозможные значения от нуля до бесконечности, и о свете, описываемом как непрерывная волна.

Эйнштейн был первым{121}, кто осознал связь между дискретностью физических величин (сейчас это называется квантовой дискретностью) и универсальной постоянной h. Если Планка можно считать первооткрывателем (в 1900 г.) новой универсальной физической константы (который понимал с самого начала, что это открытие было зарей новой эпохи физики), то Эйнштейн (в 1905–1907 гг.) стал инициатором создания физики явлений квантовой дискретности (который хорошо понимал, насколько «революционным» было это новое направление).

<p>Первые следствия неизвестного уравнения</p>

Получив фундаментальный результат, в соответствии с которым свет состоит из гранул, несущих энергию E = hf, Эйнштейн заканчивает свою мартовскую статью 1905 г. тем, что выводит из этого утверждения некоторые следствия, доступные для экспериментальной проверки. Наиболее известные из них касаются фотоэлектрического эффекта (именно они после экспериментальной проверки приведут к присуждению Эйнштейну Нобелевской премии). Выше мы объяснили, почему Ленарду казалось странным, что даже при очень большой интенсивности свет не может выбить электроны из поверхности твердого тела, когда частота f световой волны становится меньше определенного порогового значения. Гипотеза световых квантов Эйнштейна легко объясняет этот феномен.

Действительно, если предположить, что основной процесс, в результате которого электроны покидают твердое тело, заключается в «передаче энергии» квантов света E = hf электрону, то из закона сохранения энергии следует, что энергия движения (или «кинетическая энергия») электрона после его выхода из твердого тела есть Eдвиж = hf - W, где W – энергия (т. е. работа), необходимая для высвобождения электрона. Это простая математическая формула показывает (поскольку энергия движения должна быть положительной), что электроны возможно высвободить, только если частота света больше порогового значения fпорог = W/h. Кроме того, когда частота f больше, чем fпорог, эта формула дает очень простое выражение для взаимосвязи между энергией движения электрона и частотой света: Eдвиж = h (f - fпорог). Она позволяла сделать весьма точное предсказание, поскольку Эйнштейн вдобавок указывал численное значение коэффициента пропорциональности h, который в силу универсальности его природы совершенно не зависел от характера твердого тела, откуда экстрагируются электроны. Потребовалось более 10 лет экспериментальной работы, чтобы детально проверить прогноз Эйнштейна. Наиболее точные проверки были получены американским физиком Робертом Милликеном в 1915 г. Сошлемся на то, что сам Милликен говорил (в 1948 г.) о своих результатах:

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука