Читаем Мир по Эйнштейну. От теории относительности до теории струн полностью

«Я потратил 10 лет своей жизни, пытаясь проверить уравнение, предложенное Эйнштейном в 1905 г., и, вопреки моим ожиданиям, в 1915 г. был вынужден признать его однозначное подтверждение, несмотря на его необоснованный характер, поскольку мне казалось тогда, что это уравнение противоречит всем нашим представлениям об интерференции света».

Выше мы уже упоминали высказывание Макса Планка (датируемое 1913 г.), в котором он утверждает, что Эйнштейн «ошибся» с его гипотезой световых квантов. Укажем также, что вплоть до января 1924 г. Нильс Бор, Хендрик Антон Крамерс и Джон Кларк Слейтер ставили под сомнение квантовую теорию света Эйнштейна. Все это лишний раз показывает «весьма революционный» характер мартовской статьи Эйнштейна 1905 г. Но молодой сотрудник патентного бюро не останавливался на достигнутом. В 1905–1924 гг. он продолжал исследовать квантовые дискретности и их физические последствия. Кратко обозначим некоторые наиболее важные результаты, полученные Эйнштейном.

<p>Материя и кванты</p>

Берн, Швейцария, март 1906 г.

Вопреки тому, что часто пишут, предположение о том, что энергия материи физически «квантуется» (т. е. может принимать лишь определенные дискретные значения), первым высказал Эйнштейн в марте 1906 г., а не Планк в 1900 г. (результаты Планка, полученные в 1900 г., обсуждались ранее). В продолжение статьи, о которой мы говорили выше, в марте 1906 г. Эйнштейн возвращается к указанному им ранее противоречию между физическими представлениями того времени и экспериментально подтвержденным законом излучения черного тела. Он показывает, что закон черного тела, предложенный Планком в 1900 г., который был в полном согласии с результатами экспериментов, проведенных в Берлине, может быть выведен из общих законов статистической физики (путем подсчета возможных микроскопических состояний) только в предположении, что энергия каждого «материального осциллятора», присутствующего в стенках печи, принимает исключительно дискретные значения: 0, hf, 2hf, 3hf… Здесь, как и у Планка, атомы в стенках нагретой печи, считающиеся ответственными за поглощение и эмиссию теплового излучения черного тела, моделируются, как электрические заряды, прикрепленные к пружине и осциллирующие вблизи равновесного положения. Величина f задает частоту колебаний этой пружины. Требуется предположить также, что стенки заполнены бесконечным количеством осцилляторов, охватывающих всевозможные частоты, поскольку каждый отдельный осциллятор (т. е. заряд, прикрепленный к пружине) не будет чувствителен к свету, имеющему частоту, отличную от частоты f этого конкретного осциллятора.

Можно заметить, что предложенное Эйнштейном в 1906 г. уравнение для квантования энергии материи, E = nhf, где n – целое число (n = 0, 1, 2, 3, ), сильно напоминает уравнение, предложенное годом раньше для энергии световых квантов. Однако оно имеет другой физический смысл (который также отличается от физического смысла «элементов энергии», предложенных Планком в 1900 г.). Здесь E обозначает энергию материальной системы (массу, прикрепленную к пружине), а f задает частоту колебания этой массы. В полном противоречии с законами ньютоновской механики (а также их «релятивистской» модификацией, построенной на базе теории относительности), согласно которым масса, прикрепленная к пружине, может колебаться с произвольной амплитудой и, таким образом, произвольной энергией, Эйнштейн взял на себя смелость утверждать, что энергия колебаний пружины может принимать лишь дискретные значения из ряда 0, hf, 2hf, …, исключая какие-либо промежуточные значения. Хотя эта идея была не менее революционной, нежели гипотеза существования световых квантов, физическое сообщество приняло ее значительно быстрее. Первым это сделал Планк примерно в 1908 г. Необходимо отметить, что эта гипотеза, хотя и противоречила ньютоновской механике, не имела жестких противоречий с хорошо известными экспериментальными фактами. Численное значение постоянной h было весьма мало, в результате чего в лабораторных условиях не удавалось обнаружить квантование энергии обычного (т. е. макроскопического) механического осциллятора. Гипотеза световых квантов, как казалось, находится в сильнейшем противоречии со многими экспериментальными проверками, подтверждавшими волновую природу света (хотя еще в 1905 г. Эйнштейн указывал на то, что оптические лабораторные измерения оперируют лишь средними величинами и поэтому, в принципе, могут объясняться в рамках корпускулярной теории света).

<p>Ледяной алмаз</p>

Берн, Швейцария, ноябрь 1906 г.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука