По нашему мнению, очень серьезное влияние на его решение в будущем окажут экспериментальные данные по участию токсинов в функциях микробной клетки, которые не имеют прямого отношения к проявлению бактерией патогенных свойств, но используют консервативные механизмы, сходные как в эукариотических, так и прокариотических организмах.
На этот аспект проблемы ранее обратил внимание Ю. Вертиев (1996). Он считает, что бактериальные токсины, интерфероны, бактериоцины и гормоны обнаруживают сходство в отношении целого ряда важных свойств. Эти вещества синтезируются одним типом клеток, в то время как воздействуют на другие типы клеток: они действуют на клетки в чрезвычайно низкой концентрации (Ю-11–10-14 М); обладают сходной молекулярной организацией состоят как минимум из двух функционально и структурно различных белков: энзиматического и рецепторного; имеют сходные звенья молекулярного механизма действия (связывание с рецепторами, активация, транслокация внутрь клетки и модификация клеточных мишеней); обладают сходной кинетикой биологического эффекта — одноударный эффект; и, наконец, все эти вещества токсичны.
Мы еще только начинаем понимать первичную функцию биологических токсинов в природе. Если предположить, что способность бактерией синтезировать токсины закрепляло какую-то неизвестную сегодня сигнальную функцию в образуемом ими биоценозе, то понятен и двухкомпонентный состав, и одноударность их действия. Преимущество такой структуры для передачи сигналов в том, что при ее распространении из центра, сигнал не ослабляется на большом расстоянии. Если бы передача сигнала осуществлялась структурами, не способными к лиганд-специфическому взаимодействию, то сигнал ослабевал бы по мере диффузии сигнальных молекул. Отсюда, как следствие, способность воздействовать на другие типы клеток в чрезвычайно низких концентрациях.
Сопоставляя структурные особенности молекул различных бактериальных токсинов с механизмами их функционирования, нельзя не заметить, что сходство между ними обусловлено сходно направленным действием естественного отбора.
Так, способность В-субъединиц к узнаванию клетки-мишени, сопровождается закреплением за ними и других свойств. Например, кроме взаимодействия с рецептором, В-субъединица экранирует ферментативную субъединицу, предотвращая ее взаимодействие с субстратом, как в собственной клетке, так и за пределами клетки-мишени [Вертиев Ю.В., 1996]. Она служит и своего рода предохранителем, предотвращающим «случайный выстрел». Для активации токсической субъединицы необходимо протеолитическое расщепление В-субъединицы после ее взаимодействия с клеткой, мишенью. Это исключает действие токсической субъединицы на другие клетки [см., например, действие сибиреязвенного токсина). И, как мы убедились на примере протективного антигена, она способна «вводить» клетку несколько токсических ферментов, действующих синергидно. Плейротропность функций В-субъединиц находится в соответствии с «принципом экономии генов».
Механизм лиганд-рецепторного взаимодействия исключает бесконечное разнообразие структур В-субъединиц, взаимодействующих с лигандом. В основе этого явления лежит то обстоятельство, что токсины в организме хозяина используют уже готовые структуры, участвующие в эндокринной, паракринной и синаптическои сигнализации, а, следовательно, жестко поддерживаемых естественным отбором. То, что эти структуры не являются абсолютно консервативными, свидетельствуют внутривидовые различия в чувствительности к отдельным токсинам, но их консервативности хватает на выход аналогий в структуре рецепторсвязывающих участков, за пределы В-субъединиц токсинов. Например, иммуноглобулин-подобная складка домена 4 протективного антигена аналогична не только рецепторсвязывающей петле дифтерийного токсина, но и антигенсвязывающей CDR3 петле антител [Petosa et al., 1997].