Читаем Логика для всех. От пиратов до мудрецов полностью

2) Как показано в предыдущем пункте, как минимум один мудрец определит, что на нем желтый колпак, как минимум один – что на нем красный колпак, как минимум один – синий и как минимум один – зеленый.

Замечание. При «удачных» расстановках смогут назвать цвет своего колпака более четырех мудрецов. В частности, если два колпака какого-то цвета спрятаны, а третий надет на самого последнего мудреца, то он сможет определить цвет своего колпака. Отсюда остальные мудрецы догадаются, что этого цвета больше ни на ком нет, поэтому определить цвет своего колпака сможет каждый.

Д51. Подсказка. Рассмотрите сначала случаи попроще: белых колпаков не принесли совсем, принесли только один, только два и т. д.

Решение. Вместо одной задачи решим целую цепочку задач, начиная с совсем простых:

Задача 0. Если бы белых колпаков не было, то каждый мудрец смог бы определить, что на нем черный колпак.

Задача 1. Если белый колпак один, то первый мудрец ответить бы не смог, а остальные сказали бы, что на них черные колпаки, подумав так: если бы на мне был белый колпак, то первый бы его видел и смог бы понять, что на нем черный колпак (так как он умеет решать задачу 0), но он промолчал.

Задача 2. Если белых колпаков два, то первый мудрец, конечно же, промолчал бы. Второй бы подумал: независимо от цвета моего колпака остались еще и черные, и белые, поэтому первый мудрец в любом случае промолчал бы, и я тоже ничего не могу определить. Третий бы подумал: если бы на мне был белый колпак, то второй бы понимал, что белый остался только один и определил бы цвет своего колпака (так как задачу 1 он решать умеет), поэтому на мне черный колпак. Так же подумали бы и остальные и назвали бы цвета своих колпаков.

Задача 3. Если белых колпаков три, то цвет своего колпака смог бы определить четвертый мудрец (и все последующие). Ведь если бы на нем был белый колпак, то третьему мудрецу пришлось бы решать задачу 2, а это он делать умеет. Раз третий промолчал, четвертому все ясно.

Рассуждая аналогично, приходим к выводу, что определить цвет своего колпака смогут все мудрецы, начиная с одиннадцатого.

Более строго решение может быть изложено с помощью метода математической индукции.

Д52. Решим для начала более простую задачу. Пусть есть только 3 красных и 2 синих колпака, мудрецов всего трое, и султан надел на головы первому и второму мудрецам красные колпаки, а третьему – синий. Через одну минуту никто не выйдет, после чего первый мудрец подумает: «Если на мне синий колпак, то второй видит два синих колпака и понимает, что на нем красный. Почему же он не вышел? Потому что на мне красный колпак!» Аналогично сможет на второй минуте определить цвет своего колпака и второй мудрец. Третий мудрец ничего понять пока не сможет: если на нем был бы красный колпак, то каждый из двух остальных на первом шаге видел два красных колпака и все равно не мог бы ничего определить. Но за третью минуту он поймет: раз другие мудрецы раньше меня догадались о цвете своих колпаков, они видели не то же самое, что и я. Я видел два красных колпака, а они – красный и синий. Итак, на мне синий колпак».

Вернемся к нашей задаче. Перенумеруем мудрецов: у первого, второго и третьего белые колпаки, у четвертого и пятого красные и у шестого – синий. Если бы на первом был синий колпак, то через одну минуту все бы оставались на местах, а на второй минуте второй мудрец подумал бы: «Я вижу оба синих колпака. Если на мне красный, то третий мудрец видит все красные и все синие колпаки и должен был сразу понять, что на нем белый (здесь тонкость, разберемся позже). Почему же он не вышел? Потому что на мне белый колпак!»

Если бы на первом был красный колпак, второй мудрец рассуждал бы аналогично: «Я вижу все три красных колпака. Если на мне синий, то третий мудрец видит все красные и все синие колпаки и должен был сразу понять, что на нем белый. Почему же он не вышел? Потому что на мне белый колпак!»

Но на первом не синий и не красный колпак. Поэтому через две минуты второй мудрец останется на месте (аналогичная тонкость, ее тоже отложим на потом). Первый мудрец рассуждает не хуже нас с вами и из того, что второй никуда не ушел через две минуты, поймет к концу третьей минуты, что ему надо выйти в белую дверь. Вместе с ним выйдут находящиеся в таком же положении второй и третий мудрецы.

После этого каждый из трех оставшихся мудрецов подумает: «Если бы на мне был белый колпак, то я был бы точно в том же положении, что и первые трое. Но они уже определили цвет своего колпака, а я еще нет. Почему же? Потому что я не в белом колпаке!» И тут же продолжит: «Два других мудреца, пока не угадавших цвет своих колпаков, тоже только что поняли про себя, что колпаки на них не белые. Мы все теперь можем исключить из рассмотрения четыре белых колпака и ушедших мудрецов. Задача сведена к предыдущей». Как уже показано, после этого мудрецы в красных колпаках потратят еще две минуты на определение цвета своих колпаков, а за третью минуту разберется и мудрец в синем колпаке.

Перейти на страницу:

Все книги серии Школьные математические кружки

Логика для всех. От пиратов до мудрецов
Логика для всех. От пиратов до мудрецов

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Инесса Владимировна Раскина

Математика

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное