Читаем Логика для всех. От пиратов до мудрецов полностью

Решение. Предположим, что кузнечик побывал во всех секторах. Тогда сектор с номером 25 был последним, так как из него кузнечик не сможет переместиться в иной сектор. До этого кузнечик не мог побывать дважды в одном секторе, иначе бы его путь зациклился, и в 25-й сектор он бы не попал. А побывав во всех секторах по разу, кузнечик переместился бы на 1 + 2 +… + 24 = 300 секторов, то есть на число, кратное 25. Значит, он начал свое путешествие в 25-м секторе, что невозможно.

7.14. 1) Предположим, что после построения по росту Вася выше стоящего сразу за ним Никиты более чем на 10 см. Назовем Васю и стоящих перед ним мальчиков высокими, а Никиту и стоящих после него мальчиков низкими. Разница в росте между любым высоким и любым низким мальчиком больше 10 см. Но при первоначальном построении, идя вдоль строя от Васи к Никите, мы на каком-то шаге перейдем от высокого к низкому. Эти два мальчика стояли рядом, поэтому разница в росте между ними не превышает 10 см. Противоречие.

2) Пусть мальчики и девочки построены в пары в порядке убывания роста. Предположим, что в одной из пар мальчик Ваня выше девочки Маши более, чем на 10 см. Тогда рост каждого мальчика, стоящего до Вани, отличается от роста каждой девочки, стоящей после Маши, еще сильнее. Поэтому при первом построении каждый из этих мальчиков, включая Ваню, мог стоять только с кем-то из девочек, стоящих перед Машей, но таких девочек на одну меньше, чем требуется. Противоречие. Если Маша выше Вани, рассуждения аналогичны.

7.15. Слово «надо» употребляется в разных смыслах. Сначала подразумевается «нужное количество ленивых учеников», а потом – «нужное количество прилежных учеников».

<p>Занятие 8</p>

8.6. Обсуждение. Пусть А: «У Винни-Пуха хорошее настроение»; Б: «Винни-Пух хорошенько подкрепился». В какую строчку таблицы истинности надо посмотреть? Ответ. Не прав.

8.7. Истинны высказывания в пунктах 1, 3, 4, 5, 7. Ложны высказывания 2, 6, 8.

8.8. Все три высказывания означают, что некузявых ляпусиков не бывает.

Ответ. Равносильны.

8.9. Пусть Д спит. Тогда А и Г спят (из 5). Тогда Б спит (из 1), поэтому В не спит (из 3). Но это противоречит 4.

Значит, Д не спит. Тогда спят Г (из 2) и В (из 4), а Б не спит (из 3). Поэтому А не спит (из 1).

Ответ. В и Г.

8.10. Пусть мальчиков больше, чем девочек. Докажем от противного, что при любой рассадке по кругу найдутся два мальчика рядом. Предположим, что это не так, и рассмотрим произвольную рассадку. По предположению справа от каждого мальчика сидит девочка. То есть детей можно разбить на пары «мальчик и девочка справа от него», при этом могут остаться без пары только девочки. Поэтому их не меньше, чем мальчиков. Пришли к противоречию.

Пусть при любой рассадке по кругу найдутся два мальчика рядом. Рассмотрим произвольную рассадку и занумеруем детей по кругу по часовой стрелке. А затем посадим детей в таком порядке: 1, 3, 5, 7, 9, 11, 13, 15, 17, 2, 4, 6, 8, 10, 12, 14, 16. По условию после этого найдутся два мальчика рядом. Но раньше они сидели через одного, т. е. в исходном положении был гость, сидевший между ними.

Пусть при любой рассадке по кругу найдется гость, сидящий между двумя мальчиками. Докажем от противного, что мальчиков больше, чем девочек. Действительно, если бы девочек было больше, детей можно было бы рассадить так: ДДГГДДГГДДГГДДГГД, где буква Д означает девочку, а буква Г – гостя любого пола, и никто бы не сидел между двумя мальчиками.

8.11. 1) Всего существует 6 теорем указанного вида. Если дать их все, то последняя будет следовать из предыдущих. А 5 можно дать в таком порядке: 1 ⇒ 2, 1 ⇒ 3, 2 ⇒ 3, 3 ⇒ 2, 3 ⇒ 1.

2) Всего существует 12 таких теорем. Как отмечено в предыдущем пункте, с участием утверждений 1, 2 и 3 нельзя давать все 6 возможных теорем. Без ограничения общности можно исключить теорему 2 ⇒ 1. Но с участием утверждений 2, 3 и 4, а также 1, 3 и 4 тоже нельзя давать все 6 возможных теорем. Если пытаться решить обе проблемы исключением лишь одной теоремы, исключать надо 3 ⇒ 4 или 4 ⇒ 3. В любом из случаев остается цепочка из восьми теорем 1 ⇒ 3 ⇒ 2 ⇒ 4 ⇒ 1, из которой придется исключить как минимум одну теорему, и останется не более 9 теорем. Пример на 9 теорем: 1 ⇒ 2, 1 ⇒ 3, 1 ⇒ 4, 2 ⇒ 3, 2 ⇒ 4, 3 ⇒ 4, 4 ⇒ 3, 4 ⇒ 2, 4 ⇒ 1.

3) Пример на  теорем:

1 ⇒ 2, 1 ⇒ 3…, 1 ⇒ n,

2 ⇒ 3, 2 ⇒ > 4…, 2 ⇒ n,

n — 1 ⇒ n,

n ⇒ n − 1, n ⇒ n − 2…, n ⇒ 1.

Доказательство максимальности удобно изложить на языке графов. Будем считать утверждения вершинами, а теоремы – ориентированными ребрами. Оставим только ребра, ориентированные в обе стороны. Если бы они образовали цикл, то последняя доказанная в этом цикле теорема следовала бы из предыдущих теорем цикла. Значит, циклов нет. Тогда «двойных» ребер – не более n — 1, поэтому всего доказано не более  теорем.

Ответ. 1) 5; 2) 9; 3)

<p>Занятие 9</p>
Перейти на страницу:

Все книги серии Школьные математические кружки

Логика для всех. От пиратов до мудрецов
Логика для всех. От пиратов до мудрецов

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Инесса Владимировна Раскина

Математика

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное