Читаем Логика для всех. От пиратов до мудрецов полностью

Заметим, что для полного соответствия задач следовало не спрашивать мудрецов поочередно, а всех мудрецов одновременно просить написать, знают ли они цвет своего колпака, а затем показывать записки друг другу.

10.10. Смех.

10.11. Приведем возможный пример.

1. Вор Карл украл кораллы.

2. Его друг Фридрих знает, что Карл украл кораллы (но не доносит).

3. Следователь Шерлок знает, что Фридрих знает, что Карл украл кораллы (и хочет арестовать Фридриха).

4. Клара знает, что Шерлок знает, что Фридрих знает, что Карл украл кораллы (и предупреждает Фридриха, что ему надо скрыться).

5. Шерлок знает, что Клара знает, что Шерлок знает, что Фридрих знает, что Карл украл кораллы (и хочет допросить Клару).

6. Клара знает, что Шерлок знает, что Клара знает, что Шерлок знает, что Фридрих знает, что Карл украл кораллы (и благополучно скрывается вместе с Фридрихом).

<p>Дополнительные задачи</p>

Д1. Если Саша мальчик, а Женя девочка, то оба ребенка говорят правду. Противоречие. Если Саша девочка, а Женя мальчик, то оба ребенка врут, что не исключается условием «хотя бы один из них врет».

Ответ. Саша – девочка, а Женя – мальчик.

Д2. Рассмотрим честного конгрессмена в паре со всеми остальными по очереди. По условию 2 второй в паре всегда продажен.

Ответ. Один.

ДЗ. 1) Легко видеть, что Ваня говорит правду (если предположить, что он лжет и высказывание «Я не всегда говорю правду» не является правдой, то правдой будет: «Я всегда говорю правду», т. е. получится противоречие).

2) Так как смысл высказывания Антона такой же, то Антон тоже говорит правду.

3) По условию, один из мальчиков солгал, значит, это – Саша.

4) Саша сказал: «Антон не всегда говорит правду» – и при этом солгал, значит, Антон всегда говорит правду.

Ответ: Антон.

Д4. В этом утверждении говорится об истинности его самого. Поэтому его нельзя считать не истинным, ни ложным, то есть оно вообще не является высказыванием.

Комментарий. Рассмотрим такое решение. «Если это высказывание истинно, т. е. правил без исключения нет, то и из этого правила есть исключения, и правила без исключения все-таки есть. Пришли к противоречию. Значит, высказывание ложно, и существует хотя бы одно правило без исключения (хотя и не это)». Ошибка выходит на поверхность, если представить, что это правило единственное. И тогда правилу без исключения взяться неоткуда. Если же заранее договориться, что существуют хотя бы два правила, то эту фразу можно считать ложным высказыванием. Аналогично, если считать, что на Крите есть хотя бы два жителя, и только один из них сказал «Все критяне лжецы», парадокс Эпименида перестает быть парадоксом.

Д5. 1) Не каждый охотник желает знать, где сидит фазан. 2) Существует хотя бы один охотник, не желающий знать, где сидит фазан. 3) Некоторые охотники не желают знать, где сидит фазан.

Д6. Все лжецами быть не могли (в таком случае сказанное каждым оказалось бы правдой), был хотя бы один рыцарь. Он сказал правду, поэтому все остальные были лжецами.

Ответ. Один.

Д7. Первое можно опровергнуть контрпримером (начертив прямоугольник с неравными сторонами), третье и четвертое доказать примером (начертив любой квадрат), а доказать второе помогут определения прямоугольника и квадрата.

Ответ. Первое утверждение ложно, а остальные истинны.

Д8. 1) Некоторые друзья моего друга не являются моими друзьями. 2) Некоторые ананасы приятны на вкус. 3) Ни один волк не является оборотнем.

Д9. Чтобы разобраться в трех замысловатых условиях, удобно для начала перечислить все возможные виды зоопарков с точки зрения наличия жирафов, носорогов и гиппопотамов. Их всего восемь:

1) ЖНГ; 2) ЖНГ; 3) ЖНГ; 4) ЖНГ;

5) ЖНГ; 6) ЖНГ; 7) ЖНГ; 8) ЖНГ.

Здесь запись ЖНГ, например, означает, что в зоопарке есть жирафы, нет носорогов и есть гиппопотамы. В силу первого условия вычеркиваем зоопарки вида 1, в силу второго – вида 7, в силу третьего – вида 2. Теперь видно, что ничто не противоречит существованию зоопарков вида 6.

Эти рассуждения могут быть изображены с помощью кругов Эйлера. Области на рис. 30 пронумерованы в соответствии с приведенным списком. Зоопарки, запрещенные условием, закрашены серым. Зоопарки, соответствующие остальным областям, могут существовать, в том числе и соответствующие шестой области.

Ответ. Да.

Рис. 30

Д10. Чтобы выполнить пожелание Ани, необходимы и яблоки, и сливы. Чтобы порадовать Галю, нужны еще и персики. Остается лишь проверить, что Боря и Витя при этом тоже будут довольны.

Ответ. Надо купить яблоки, сливы и персики.

Д11. 1) Луна сделана не из сыра или Солнце не из масла.

2) Я не видел медведя или он видел меня.

3) Я боюсь львов или крокодилов.

4) Лошадь не заблудилась и ее не засыпало снегом.

5) Я не отправился в разведку ни на коне, ни на ядре.

Д12. Третья дверь может вести только в учительскую. Значит, за дверью с табличкой «Спортзал» не спортзал и не учительская, т. е. столовая.

Ответ. В столовую.

Перейти на страницу:

Все книги серии Школьные математические кружки

Логика для всех. От пиратов до мудрецов
Логика для всех. От пиратов до мудрецов

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Инесса Владимировна Раскина

Математика

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное