Задача Д48. Двум мудрецам принесли два черных и один белый колпак. Затем их поставили в затылок друг другу и надели на каждого по колпаку. После этого спросили сначала второго, а потом первого, знает ли он, какого цвета колпак на его голове. Второй мудрец сказал, что не знает. А первый правильно назвал цвет своего колпака. Какой именно?
Задача Д49. Трем мудрецам принесли три черных и два белых колпака. Затем их построили в затылок друг другу, после чего надели на каждого по черному колпаку. После этого стали по очереди спрашивать каждого мудреца, начиная с последнего, какого цвета у него колпак. На это мудрецы либо отвечают «Не знаю», либо называют цвет. Что будут отвечать мудрецы?
Задача Д50 Десяти мудрецам принесли по три желтых, синих, красных и зеленых колпака. Мудрецов построили в затылок друг другу и надели каждому по колпаку, а два оставшихся колпака спрятали. Затем по очереди, начиная с последнего, стали спрашивать каждого, какого цвета у него колпак. На это мудрецы либо отвечают «Не знаю», либо называют цвет.
1) Докажите, что кто-то из мудрецов назовет цвет.
2) Докажите, что назовут цвет не менее четырех мудрецов.
Задача Д51*. Двадцати мудрецам принесли 10 белых и 50 черных колпаков. Затем им завязали глаза и надели каждому на голову по черному колпаку, а все ненадетые колпаки спрятали. После этого им развязали глаза и стали у каждого по очереди спрашивать, какого цвета колпак у него на голове. Какой по счету мудрец сможет назвать цвет? Что будут говорить следующие?
Задача Д52*. Султан пригласил шестерых мудрецов в комнату с тремя дверьми: белой, красной и синей – и достал 4 белых, 3 красных и 2 синих колпака. Мудрецы сели в круг и крепко зажмурились. После этого султан надел троим мудрецам белые колпаки, двоим красные и одному синий. Открыв глаза, мудрецы получили возможность видеть цвета колпаков у всех остальных, но не у себя. Каждую минуту раздается удар гонга, после которого все мудрецы, знающие цвет своего колпака, должны выйти в дверь соответствующего цвета. Сколько мудрецов смогут покинуть комнату?
Мудрецы и числа
Задача Д53. Каждому из двух мудрецов дали бумажку с написанным на ней натуральным числом и сообщили, что одно число вдвое больше другого. Когда мудрецы посмотрели на числа, между ними состоялся такой диалог:
А: «Я не знаю твое число».
Б: «И я не знаю твое число».
А: «И я не знаю твое число».
…
Докажите, что рано или поздно кто-то из мудрецов сможет сказать: «Теперь я знаю твое число».
Задача Д54*. Султан вызвал 10 умнейших своих мудрецов и огласил правила нового испытания. Каждому мудрецу сообщат число от 1 до 1000 включительно, одно из чисел строго больше остальных. Затем каждого мудреца по очереди будут спрашивать, не у него ли максимальное число. Он может ответить «Не знаю» либо «У меня». После ответа «Не знаю» испытание продолжается, вопрос задают следующему мудрецу. Если последний мудрец ответил «Не знаю», вопрос опять задают первому мудрецу и так далее. После ответа «У меня» испытание заканчивается. Если мудрец ответил правильно, всех мудрецов отпускают, если неправильно – всех мудрецов казнят.
Мудрецам запретили не только обмениваться какой-либо информацией во время испытания, но даже договариваться о чем-либо заранее. Испытание началось. Королевский палач сто раз обошел всех мудрецов, и сто раз каждый из них ответил «Не знаю». Наконец, палач в сто первый раз спросил первого мудреца, не у него ли максимальное число.
«У меня!» – ответил мудрец. Конечно, ответ был правильный, всех мудрецов отпустили. Какое число было у первого мудреца?
Задача Д55Ї Математик В предложил математикам А и Б такую загадку:
– Я задумал три попарно различных натуральных числа, произведение которых не превосходит 50. Сейчас я конфиденциально сообщу А это произведение, а Б – сумму задуманных чисел. Попробуйте отгадать эти числа.
Узнав произведение и сумму соответственно, А и Б вступили в диалог:
А: «Я не знаю этих чисел, но если бы мое число было суммой, я бы их знал».
Б: «Я все равно не знаю их».
Докажите, что теперь А сможет определить числа.
Задача Д56*. В одиночных камерах сидят 4 друга-математика. Каждому из них сообщили, что их номера в списке различны, двузначны и один из этих номеров равен сумме трех других. Но, даже узнав номера троих других, никто из них не смог вычислить свой номер. Так какие же у них были номера?
Задача Д57*. Каждому из трех логиков написали на лбу натуральное число, причем одно из этих чисел являлось суммой двух других, и сообщили им об этом. Логик не видит, что написано у него на лбу, но видит, что написано у других. Первый логик сказал, что не может догадаться, какое число написано у него на лбу. После этого то же самое сказал второй логик, а затем и третий. Тогда первый сказал: «Я знаю, что у меня на лбу написано число 50». Какие числа написаны у двух остальных?
Решения задач
Занятие 1