Как же обоснован этот вывод? — В меньшей посылке мы установили отношение меньшего термина к некоторому третьему понятию — к понятию «амфибии». Меньшая посылка установила, что «все лягушки — амфибии», т. е. что весь объём понятия «лягушки» полностью входит в объём понятия «амфибии». В большей посылке мы установили отношение этого же самого третьего понятия к большему термину — к понятию «позвоночные». Бо́льшая посылка установила, что «все амфибии — позвоночные», т. е. что весь объём понятия «амфибии» полностью входит в объём понятия «позвоночные». В результате оказалось возможным установить — через третье понятие (понятие «амфибии») — связь между понятием «лягушки» и понятием «позвоночные»: так как все лягушки входят в число амфибий, а все амфибии, в свою очередь, входят в число позвоночных, то все лягушки должны также входить в число позвоночных. Или иначе: так как в число позвоночных входят все амфибии, а в число амфибий — все лягушки, то в число позвоночных должны входить все лягушки.
Третье понятие, посредством которого в выводе выясняется отношение между меньшим и бо́льшим терминами, называется
Как видно из примера, средний термин входит в каждую из посылок, но не входит в заключение, или в вывод, силлогизма. Нетрудно понять, почему это так. Цель силлогизма, как мы уже знаем, состоит в выяснении отношения между двумя понятиями S и Р. Средний термин появляется в силлогизме не потому, что средний термин нас интересует сам по себе. Он появляется потому, что только через отношение среднего термина к S и Р может, быть выяснено не видное непосредственно отношение между S и Р. Но выяснение отношения среднего термина к S и Р достигается уже в посылках силлогизма: бо́льшая посылка раскрывает отношение среднего термина к Р, меньшая — к S. Как только задача выяснения этих отношений выполнена, как только отношение между S и Р стало ясным из отношения каждого из них в отдельности к среднему термину, средний термин перестаёт быть предметом нашей мысли. Наша мысль направляется уже не на средний термин, а на то отношение между S и Р, которое было выяснено с помощью среднего термина. Поэтому в выводе, или в заключении, силлогизма выступают только S и Р.
Обозначим средний термин буквой М. Тогда наш силлогизм может быть представлен следующей схемой, или, как говорят в логике, «фигурой»:
М — P | S — M | |||||
S — М | или | М — Р | ||||
——— | ——— | |||||
S — P | S — Р |
Как видно из примера и из его схемы, порядок посылок никакой роли не играет: бо́льшая посылка может быть первой, а меньшая — второй и наоборот. От порядка посылок в силлогизме вывод, т. е. логическая связь между субъектом и предикатом, не зависит.
Обстоятельство это необходимо запомнить, чтобы не связывать названия «бо́льшая посылка» и «меньшая посылка» с тем порядком, в каком посылки следуют одна за другой. Независимо от этого порядка большей будет только та посылка, в которую входит
Силлогизмы могут иметь различное строение посылок, и потому самые выводы в них могут стоять в зависимости от различных правил. Логика устанавливает все эти правила и изучает все разновидности силлогизмов.
§ 10. Первая группа силлогизмов — так называемые
Рассматривая встречающиеся в практике мышления простые категорические силлогизмы, можно заметить, что расположение понятий, или терминов, в посылках этих силлогизмов может быть различным.
Рассмотрим следующий силлогизм:
Все амфибии — позвоночные. | М—Р | |||
Все лягушки — амфибии. | S—M | |||
——————————— | ——— | |||
Все лягушки — позвоночные. | S—P |
В нём средний термин в большей посылке является субъектом, а в меньшей — предикатом.
Силлогизм, в котором понятия, или термины, расположены таким образом, называется силлогизмом
В нашем примере силлогизма первой фигуры меньшая посылка («все лягушки — амфибии») выясняет, что весь объём класса S входит как часть в более обширный объём класса М (см. рис. 38).
Рис. 38
Бо́льшая посылка («все амфибии — позвоночные») выясняет, что этот более обширный объём класса М весь входит как часть в ещё более обширный объём класса Р (см. рис. 39).
Рис. 39
Сопоставляя эти отношения понятий, выяснившиеся из посылок, устанавливаем в выводе («все лягушки — позвоночные») принадлежность класса S, имеющего
Рис. 40
§ 11. Рассмотрим теперь другой пример силлогизма: