Что такое пространство? Почему пространство Лобачевского и пространство Римана отличается от эвклидова пространства? Что означает, к примеру, отклонение суммы внутренних углов треугольника от 180°? При измерении поверхностей оно означало меру кривизны той или иной поверхности. Но может ли быть искривлено пространство? Как это наглядно можно было бы себе представить?
Пространство, физическое трехмерное пространство искривлено, и лишь в бесконечно малых областях его можно считать плоским, неискривленным, эвклидовым! — вот к такому выводу приходит Риман. Мерой отличия любого пространства от эвклидова является кривизна.
Уже Лобачевский близко подошел к мысли о кривизне пространства. Он вопреки Ньютону считал, что в мире пустоты не существует; все тела в природе можно представлять частями одного целого — пространства. Пространство есть протяженность, присущая всем телам, кроме того, оно обладает структурой. Соприкосновение тел как форма их взаимодействия образует основу пространственных отношений. Может ли материальная протяженность быть искривленной? По-видимому, да. Как уже отмечалось, понятие кривизны поверхности — этого двумерного пространства, если мы не выходим за ее пределы, не является наглядным. Также не является наглядным и понятие кривизны трехмерного пространства. А выйти за его пределы мы не в состоянии, так как в природе не существует четвертого геометрического измерения. Во всяком случае, три измерения выражают всю полноту связи сосуществующих явлений.
Эвклидово пространство можно считать плоским, обладающим нулевой кривизной; пространство Лобачевского имеет отрицательную кривизну, Римана — положительную.
— Какова же истинная геометрия физического пространства? Это можно установить только опытным путем, — повторяет Риман вслед за Лобачевским.
Геометрия реального мира есть вопрос физический.
Человечество могло поздравить себя: оно стало обладателем трех геометрий — плоской эвклидовой, гиперболической Лобачевского и эллиптической Римана! Три пространства со своей внутренней геометрией. Это в полном смысле трехмерные физические пространства, и в каждом существуют свои типы поверхностей: в эвклидовом — поверхность шара, плоскость; в пространстве Лобачевского — плоскость, на которой осуществляется гиперболическая геометрия, поверхность шара и некая предельная поверхность, несущая на себе планиметрию Эвклида. Есть свои поверхности и у риманова пространства.
Но Риману всего этого показалось мало: он решил создать еще одну геометрию — общую, которая включала бы в себя все мыслимые геометрии, причем наиболее простые из них — три нам уже известные. Оказывается, геометрий может быть бесчисленное множество. Стоило Лобачевскому сдвинуть многовековой обомшелый камень, как геометрии посыпались, словно из рога изобилия.
Риман стал творцом геометрии множеств. Что такое множество или многообразие? Это совокупность чего-либо, коллектив вещей, понятий, идей, числовые группы. Всякая поверхность, например, не что иное, как двумерное множество, так как каждый элемент, точка определяется здесь двумя координатами; физическое пространство — трехмерное множество — оно имеет три измерения; совокупность всех окружностей на плоскости — тоже трехмерное множество: каждый ее элемент — окружность — определяется координатами центра и радиусом.
Множество может состоять и не из геометрических элементов: рой несущихся в пространстве и времени материальных частиц — четырехмерное множество. Можно строить геометрию кругов, шаров, множества цветов, звуков, роя частиц и т. д. Нужно только найти для каждого множества свое мероопределение. То есть геометрия свойственна не только реальному пространству, а любому множеству; ее следует рассматривать не как абсолютно точную геометрию реального пространства, а как приближение, модель форм и отношений этого пространства. Риман приходит к понятию кривизны многообразия. Всякое многообразие имеет свою кривизну. Одна и та же геометрия может иметь несколько истолкований, если она находит свое осуществление на нескольких различных множествах.
В понятие многомерности «римановых пространств» не следует вкладывать ничего мистического: ведь это всего-навсего «идеальные» математические «пространства». Совокупность звуков является двумерным многообразием лишь потому, что они отличаются амплитудой и частотой колебаний; в кинетической теории газов применяют пространство 36x10 23измерений. Риман расщепил пространство на его малые элементы и показал, как из упрощенной метрики элемента, точки разворачивается метрика всего физического пространства.
Пространства Эвклида, Лобачевского, эллиптическое Римана имеют постоянную кривизну; общая геометрия Римана не может обладать постоянной кривизной.
Как видим, Риман мыслил весьма непрямолинейно. Он довершил дело, начатое Лобачевским. Остальным математикам осталось лишь отыскивать все новые и новые множества. Из идей Лобачевского и Римана впоследствии родился четырехмерный мир теории относительности.