Своеобразное «столкновение» двух описанных методов синтеза кремнийорганических соединений (Андрианов и Рохов) произошло буквально в первые годы после их создания. В начале 1940-х гг. Ю. Рохов пытался запатентовать в Германии способ получения диметилсилоксанов гидролитической поликонденсацией диметилдихлорсилана с образованием силанолов и затем силоксанов (как показано на рис. 6.5 и рис. 6.6). Запатентовать этот метод в Германии Рохову не удалось. Скрупулезные немецкие эксперты отказали Рохову на том основании, что патентуемый принцип получения полисилоксанов был описан Андриановым еще в 1938 г. в «Журнале общей химии». Несмотря на возражения Рохова, что Андрианов работал с этоксипроизводными силанов (см. рис. 6.3), а он – с диметилдихлорсиланом (см. рис. 6.5), специалисты из Германии отвечали, что речь идет об одном и том же принципе образования силоксановой связи, а различие в природе функциональных групп у кремния они считали несущественным. Естественно, Андрианов ничего не знал об этой переписке.
Переписка прекратилась после того, как США вступили в войну против Германии, однако история имела продолжение. По окончании войны в руки КГБ попали архивы патентного управления немецкого рейха, и в одном из дел следователи обнаружили фамилию Андрианова, причем она фигурировала в переписке между патентным управлением Германии и фирмой Coming Glass (ставшей впоследствии Dow Corning). Андрианова вызвали на Лубянку, и следователь поставил вопрос: в какой степени работы Андрианова в области кремнийорганических полимеров способствовали укреплению военной мощи фашистского рейха? Где было гражданское сознание ученого, когда перед войной он опубликовал основополагающие работы, показав тем самым врагу важные направления исследований? Андрианов пытался доказать, что перед войной никто не знал о важном оборонном значении этих полимеров. Более того, критики работ Андрианова считали такое научное направление бесперспективным. Вероятно, избежать репрессий помог здравый смысл следователя – или, возможно, иные обстоятельства (Андрианов к этому моменту был уже дважды лауреатом Сталинской премии). Так или иначе, все закончилось благополучно.
Вращение, переходящее в гибкость
Упомянутая выше гибкость – исключительно важное свойство силоксановой связи. Однако не следует понимать это буквально, представляя себе деформируемую металлическую проволоку. Химическая связь, которую мы изображаем валентной чертой, – достаточно жесткое образование. Гибкость, о которой идет речь, когда рассматривают структуры в форме цепочек, имеет совсем иную природу. Дело в том, что валентный угол, образованный двумя связями (объединяющими, естественно, три атома), в результате теплового движения имеет определенную свободу вращения вокруг связи – если этому не препятствуют различные пространственные затруднения. При вращении величина валентного угла α не меняется, и атом имеет возможность перемещаться по основанию мысленного конуса (рис. 6.7). Два диаметральных положения атома показаны в виде шариков с различающейся окантовкой символа Si.
Из показанной схемы вовсе не следует, что атом, словно планета, непрерывно вращается вокруг валентной связи. Отмеченное стрелкой круговое движение означает, что атом в результате теплового движения с равной вероятностью может занять любое место на указанной траектории (основание конуса), а затем легко его изменить.
https://yadi.sk/i/rj7uRTGqSvb8JQ
Каждый последующий присоединенный атом может точно так же вращаться вокруг одинарной связи. Напомним, на рис. 6.8 у каждого атома Si своя индивидуальная окантовка – и мы можем проследить его положение в различных стадиях поворота всей конструкции. Благодаря вращению молекула из пяти атомов (три Si и два О) может принять любую из показанных на рисунке конфигураций – от почти выпрямленной (обозначена в правой части рисунка пунктирной линией) до согнутой в полукольцо (штрихпунктирная линия). Конечный результат – отчетливая гибкость молекулы. Похоже на механическую конструкцию, собранную из жестких стальных стержней, соединенных шаровыми шарнирами, что придает ей определенную гибкость, подобную той, которую можно наблюдать у карданного вала в автомобиле.
Гибкость цепи – отличительное свойство всех линейных полимеров, однако степень гибкости может быть разной и зависит от того, насколько легко происходит поворот каждого звена. Установлено, что в случае полиорганосилоксанов соответствующая энергия вращения в три-четыре раза ниже, чем у обычных органических полимеров.
Ранее было сказано, что при конденсации силанолов получить полимерные молекулы не удается (причина – все та же гибкость и, как следствие, замыкание циклов). Задачу решили иным путем – размыканием циклов в процессе полимеризации в присутствии катализатора (рис. 6.9).