Нобелевский доклад Левитта был своеобразен: ученый рассказывал не столько о своих работах, сколько об успехах ближайших коллег, иллюстрируя это фотографиями. Например, портрет ближайшего коллеги Арье Варшеля (третьего лауреата) появлялся на экране несколько раз. Подводя итоги своей работы, проделанной в основном на компьютерах, М. Левитт обратил внимание слушателей на успехи в производстве компьютеров, причем в своеобразной форме. Он сказал: "
Основные жизненные принципы Левитта: быть оригинальным, быть настойчивым, быть страстным, быть добрым. На последнем слайде доклада он показал имена 44 студентов и аспирантов из 16 стран (в том числе и из России), помогавших ему в разное время в работе.
Арье Варшель родился в 1940 г. в кибуце Сде-Нахум, Израиль, в 1958–1962 гг. служил в израильской армии, а после обучения в Хайфском университете в 1966 г. получил степень бакалавра. В 1969 г. защитил диссертацию в Институте им. Вейцмана под руководством профессора Шнеера Лифсона, который был также научным руководителем второго лауреата М. Левитта. В период 1970–1972 гг. проходил стажировку в Гарвардском университете под руководством Мартина Карплуса (первого из лауреатов этой работы), после чего вернулся в Институт им. Вейцмана. В период 1974–1976 гг. работал в лаборатории молекулярной биологии в Кембридже, в 1976 г. перешел на химический факультет Университета Южной Калифорнии, где в 1984 г. получил звание профессора.
Следуя стилю, предложенному двумя предыдущими лауреатами, Варшель в заключение доклада показал слайд с 78 (!) портретами, соединенными между собой, и с собственным портретом (в центре) по принципу пазла, что удачно символизирует совместную работу большого научного содружества.
Каждому заранее понятно, что лауреат делал свою работу не в одиночестве, но масштабный "ковер" из лиц зрелых и юных помощников производит впечатление.
Глава 6
Ближайшие "родственники" углерода
К настоящему моменту в химической литературе описано свыше 20 млн синтезированных соединений, и более 80 % из них – это органические соединения. Почему химия так интенсивно изучает соединения одного элемента – углерода? Причин здесь несколько. Прежде всего атомы углерода (почти всегда с участием атомов водорода) в руках умелого химика-синтетика способны соединяться друг с другом практически в любом количестве и в разных вариантах. С помощью простых и кратных связей они образуют совершенно немыслимое число различных линейных, циклических, полициклических и каркасных структур.
Окружающая нас живая природа, создающая органические молекулы, предоставляет химикам для исследования столь гигантский набор веществ, что рядом с ним ассортимент соединений минерального мира выглядит весьма скромно. Существует ли элемент, который мог бы составить конкуренцию углероду или хотя бы слегка потеснить его в попытке оспорить такое безоговорочное лидерство? В поисках достойного соперника обратимся к элементу, наиболее близкому к углероду по химическим свойствам. Естественно, это кремний – стоящий под углеродом элемент 4-й группы периодической системы.
Не так уж они похожи
Сначала химики полагали, что из атомов кремния можно будет собрать молекулы различной конфигурации, по разнообразию не уступающие органическим соединениям. По аналогии с углеродом решено было окружить атомы кремния атомами водорода. Оказалось, что атомы кремния могут объединяться друг с другом, образуя цепочки и циклы. Однако химики смогли получить молекулы лишь небольшой длины. Фрагменты SiH2 могут образовывать короткие цепочки, содержащие не более десяти атомов кремния, в то время как звенья СН2 образуют цепи, содержащие сотни тысяч таких фрагментов (например, полиэтилен) (рис. 6.1).
Постепенно исследователям стало понятно, что химия кремния заметно отличается от химии углерода. Кремний не может воспроизвести все то, что с легкостью делает углерод, и слепое копирование процессов не привело к успеху. Ожидание структурного многообразия не подтвердилось, и выстроить химию, аналогичную органической, не удалось.