Существует еще целый ряд неупомянутых параметров, которые можно вычислить с помощью таких программ и которые химики используют для объяснения происходящих превращений. В процессе расчета программа выводит на экран молекулу в виде объемной модели. При желании можно посмотреть, как программа будет деформировать молекулу в поисках оптимальной структуры (фильм, увлекательный для химика). Кроме того, можно увидеть, как выглядят упомянутые в пункте е) полупрозрачные области наиболее вероятного расположения электронов – орбитали, внешне напоминающие облака.
Напомним, что все это можно проделать для пока не полученной, а только нарисованной молекулы. В отличие от упомянутой ранее молекулярной механики, при расчетах учитывается поведение электронов, что делает получаемые результаты намного более точными.
Постепенно химиков перестали удовлетворять знания о внутреннем строении молекулы – они захотели узнать, как она реагирует с другими молекулами. Иными словами, ученые заинтересовались не тем, как она выглядит, а тем, что с ней происходит. Были разработаны некоторые экспериментальные приемы, позволяющие понять механизмы протекающих реакций. Например, в реагирующую молекулу можно ввести изотопную метку – заменить, например, один из атомов на его более тяжелый изотоп – и далее проследить, в какое место она переместится в процессе реакции. Впрочем, таким способом мы фиксируем лишь начальный и конечный момент – и не можем увидеть процесс, поскольку химическое взаимодействие – то есть перемещение электронов – проходит молниеносно и потому скрыто от глаз исследователей.
Частично решить эту проблему позволила работа американского химика А. Зевейла, лауреата Нобелевской премии 1999 г. по химии. Он направлял на реагирующие молекулы очень короткие (фемтосекундные, 10–15 с) лазерные импульсы и анализировал полученные спектры, то есть получал «фотографию» быстродвижущихся объектов, используя мгновенную «фотовспышку». Однако этот метод экспериментально труден и применим только к простым объектам.
Все упомянутые расчетные программы, в том числе и Gaussian, оперируют с молекулами, которые находятся в "спокойном" состоянии, а не в процессе реакции. Могут ли эти программы показать не то, как выглядит молекула, а то, как она реагирует с другими молекулами? Теоретически такое возможно, но при расчете крупных биомолекул для проведения вычислений нужно невероятное количество времени, а если принять во внимание то, что процесс расчета иногда останавливается и требует внесения исправлений и уточнений, то станет ясно, что дождаться результатов расчета будет практически нереально.
Наблюдать протекание химических реакций с помощью квантовой химии стало возможным благодаря усилиям трех нобелевских лауреатов: американского ученого Мартина Карплуса и двух израильских ученых – Майкла Левитта и Арье Варшеля, получивших в 2013 г. Нобелевскую премию "за развитие метода масштабных моделей для сложных химических систем".
Фотография с размытыми краями
На заре фотографии фотообъективы были несовершенны, а получающиеся изображения размыты по краям. В результате фотопортреты стали намеренно изготавливать в овале с нерезкими краями, что постепенно превратилось в эстетическую норму: это позволяло сосредоточить взгляд на лице, изображенном на фотопортрете, и не обращать внимания на второстепенные детали. Подобный стиль – акцентирование внимания на наиболее важных деталях снимка – сохранился и до нашего времени, несмотря на то что современные фотообъективы дают резкое изображение по всему полю снимка. Именно этот принцип использовали авторы премированной работы, разработав расчетную программу, позволяющую с различной степенью точности определять особенности структуры отдельных фрагментов молекулы.
Один из будущих лауреатов Мартин Карплус, работая в Гарвардском университете (Кембридж, США) в начале 1970-х гг., изучал возможность создания компьютерных программ, которые могли бы имитировать химические реакции с помощью квантовой химии. В середине 1970-х гг. второй из будущих лауреатов – Арье Варшель – прибыл в Гарвард для совместной работы с М. Карплусом. Ученым удалось создать программу, которая осуществляла расчет молекулы следующим образом: для фрагментов, соединенных простыми связями, проводились приблизительные вычисления методами молекулярной механики, а для двойных связей использовался точный квантово-химический расчет. В качестве объекта был взято соединение, показанное на рис. 5.1.
Рассчитанные инфракрасные спектры соединения превосходно совпали с экспериментальными. Это был первый опыт создания гибридной расчетной программы, сочетающей молекулярную механику и квантово-химические методы.