Кажется удивительным, что природа поместила электроны в столь причудливые области наиболее вероятного их местопребывания. Нелегко даже подобрать какие-либо реальные образы, с которыми можно сравнить эти орбитали – восемь необычных конгломератов, напоминающих грозди из горошин и кофейных зерен, и это все увенчано космическим летательным аппаратом, собранным из пяти разновеликих торов, пронизанных двумя каплеобразными телами. Все эти девять орбиталей непостижимым образом размещаются вокруг одного атомного ядра, не мешая друг другу, и также вокруг ядра располагаются все
Первое подтверждение расчетов
Все показанные картинки, изображающие форму орбиталей, получены с помощью квантово-химических расчетов. В подобных случаях обычно говорят: «Теория – это хорошо, а как на практике?» Необычайно трудно зафиксировать то, как «мечется» электрон внутри отведенной ему области, и тем не менее в 2013 г. с помощью специально сконструированного квантового микроскопа, зафиксировавшего атом водорода, такое удалось сделать Анете Стодольна из Института атомной и молекулярной физики, Нидерланды (рис. 4.18).
Размытое облако на снимке напоминает показанную ранее картинку с перемещениями электрона вокруг ядра (см. рис. 4.4а). Таким образом, сферическая форма
Упрощение бывает полезно
До сих пор мы обсуждали только атомы, а теперь перейдем к молекулам. Вернемся к молекуле метана CH4, изображенной на обложках учебников (рис. 4.3).
У атома углерода на втором электронном уровне находятся четыре орбитали (одна
В тот момент, когда атом углерода образует четыре химических связи с четырьмя атомами водорода, все четыре орбитали сливаются, образуя орбитали-гибриды (рис. 4.19, справа внизу), которые по форме напоминают несимметричные объемные восьмерки (крупная капля и маленький хвостик). Обычно их обозначают как
Такие картинки можно увидеть во всех учебниках органической химии, а истинный внешний вид гибридов показан на рис. 4.20. Для того чтобы нагляднее показать их форму, гибриды изобразили на некотором удалении друг от друга (рис. 4.20, слева), но чтобы увидеть всю картину в реальности, эти орбитали необходимо совместить в пространстве – при этом четыре белые точки должны совпасть (именно в этом месте находится ядро углерода). Результат показан на рис. 4.20, справа.
Далее эти четыре орбитали, направленные к вершинам мысленного тетраэдра, перекрываются со сферическими орбиталями четырех атомов водорода, что соответствует образованию четырех химических связей (как показано на обложках учебников). Именно здесь возникают сложности с графическим изображением: если к фигуре, состоящей из «слипшихся» шарообразных объемов (рис. 4.20, справа), вплотную приблизить четыре сферы, то разобрать на рисунке ничего не удастся. Все выглядит намного понятнее, если гибридные орбитали намеренно растянуты (рис. 4.19). Поэтому истинный вид орбиталей постоянно искажают в угоду наглядности, и на это трудно что-либо возразить. Впрочем, рис. 4.20 поможет любителям точности представить, как все выглядит на самом деле.
Рисунки на обложках учебников изображают перекрывание орбиталей атомов углерода и водорода в молекуле метана, но это промежуточная стадия, наиболее часто изображаемая и обсуждаемая. Когда связи уже образовались, появляются молекулярные орбитали, очерчивающие области возможного перемещения электронов вокруг молекулы. Число молекулярных орбиталей равно сумме исходных атомных орбиталей. На рис. 4.21а показана одна из молекулярных орбиталей метана.