Читаем Курс теоретической астрофизики полностью

После нахождения величин 𝐼𝑖 из уравнений (2.36) основная искомая функция 𝑆(τ) определяется по формуле

𝑆(τ)

=

1

2

𝑎

𝑗

𝐼

𝑗

.

(2.37)

Найдём в виде примера функцию 𝑆(τ) в первом приближении. В данном случае μ1=-μ-1=1/√3, 𝑎1=𝑎-1=1. Поэтому вместо (2.36) получаем

1

√3

𝑑𝐼1

𝑑τ

=

𝐼

1

-

1

2

(

𝐼

1

+

𝐼

-1

),

-

1

√3

𝑑𝐼-1

𝑑τ

=

𝐼

-1

-

1

2

(

𝐼

1

+

𝐼

-1

).

(2.38)

Система уравнений (2.38) должна быть решена при условиях, что 𝐼-1=0 при τ=0 и

2

√3

(

𝐼

1

+

𝐼

-1

)=

𝐹

.

(2.39)

Находя 𝐼1 и 𝐼-1 из (2.38) при указанных условиях, для искомой функции 𝑆(τ) получаем

𝑆(τ)

=

3

4

𝐹

τ

+

1

3

.

(2.40)

Как мы увидим дальше, выражение (2.40) для функции 𝑆(τ) оказывается более точным, чем полученные ранее выражения (2.24) и (2.33). Увеличив число членов в квадратурной формуле (2.35), можно получить ещё более точные выражения для 𝑆(τ).

4. Интегральное уравнение Милна.

Из системы уравнений (2.9) можно получить одно интегральное уравнение для определения функции 𝑆(τ). Для этого надо решить первое из уравнений (2.9) относительно 𝐼(τ,θ) и подставить найденное выражение 𝐼(τ,θ) через 𝑆(τ) во второе из этих уравнений. Такой путь решения задачи представляется наиболее естественным, так как мы получаем одно уравнение для определения функции, зависящей только от одного аргумента.

Общее решение первого из уравнений (2.9) имеет вид

𝐼(τ,θ)

=

𝐼(τ

,θ)

𝑒

-(τ-τ)secθ

+

+

τ

τ

𝑒

-(τ'-τ)secθ

𝑆(τ')

secθ

𝑑τ'

.

(2.41)

Оно представляет собой уравнение переноса излучения в интегральной форме [сравните с уравнением (1.14)].

Уравнение (2.41) следует рассматривать отдельно для двух случаев: для излучения, идущего снизу вверх, и для излучения, идущего сверху вниз.

В первом случае, полагая τ=∞ и считая, что интенсивность излучения не возрастает экспоненциально с ростом τ, получаем

𝐼(τ,θ)

=

τ

𝑒

-(τ'-τ)secθ

𝑆(τ')

secθ

𝑑τ'

θ

<

π

2

.

(2.42)

Во втором случае, полагая τ=0 и принимая во внимание граничное условие (2.10), находим

𝐼(τ,θ)

=-

τ

0

𝑒

-(τ'-τ)secθ

𝑆(τ')

secθ

𝑑τ'

θ

>

π

2

.

(2.43)

Теперь мы должны подставить выражения (2.42) и (2.43) во второе из уравнений (2.9). Делая эту подстановку и меняя порядок интегрирования, имеем

𝑆(τ)

=

1

2

τ

𝑆(τ')

𝑑τ'

×

×

π/2

0

𝑒

-(τ'-τ)secθ

𝑆(τ')

secθ

sinθ

𝑑θ

-

-

1

2

τ

0

𝑆(τ')

𝑑τ'

π

π/2

𝑒

-(τ'-τ)secθ

𝑆(τ')

secθ

sinθ

𝑑θ

.

(2.44)

Положим secθ=𝑥 в первом интеграле и -secθ=𝑥 во втором. Учитывая, что secθsinθ𝑑θ=𝑑𝑥/𝑥 вместо предыдущего уравнения получаем

𝑆(τ)

=

1

2

τ

𝑆(τ')

𝑑τ'

1

𝑒

-(τ'-τ)𝑥

𝑑𝑥

𝑥

+

+

1

2

τ

0

𝑆(τ')

𝑑τ'

1

𝑒

-(τ-τ')𝑥

𝑑𝑥

𝑥

.

(2.45)

Так как показатели в обеих экспонентах могут быть представлены в виде -|τ-τ'|𝑥, то (2.45) короче записывается так:

𝑆(τ)

=

1

2

0

𝑆(τ')

𝑑τ'

1

𝑒

-|τ-τ'|𝑥

𝑑𝑥

𝑥

.

(2.46)

Ядро интегрального уравнения (2.46) есть интегральная показательная функция, определяемая формулой

𝐸₁τ

=

1

𝑒

-τ𝑥

𝑑𝑥

𝑥

.

(2.47)

Заметим, что функция 𝐸₁τ при τ=0 имеет логарифмическую особенность, а при τ→∞ стремится к нулю как 𝑒/τ.

С помощью (2.47) интегральное уравнение для определения функции 𝑆(τ) окончательно записывается в виде

𝑆(τ)

=

1

2

0

𝐸₁

|τ-τ'|

𝑆(τ')

𝑑τ'

.

(2.48)

Это интегральное уравнение называется уравнением Милна.

Уравнение (2.48) определяет функцию 𝑆(τ) с точностью до произвольного множителя, который находится из того условия, что задан поток излучения 𝐻=π𝐹.

Выразим поток излучения через функцию 𝑆(τ). Для этого надо подставить в формулу (2.21) выражения (2.42) и (2.43). Выполняя такие же преобразования, как и при получении уравнения (2.48), находим

𝐹

=

2

τ

𝑆(τ')

𝐸₂

(τ'-τ)

𝑑τ'

-

2

τ

0

𝑆(τ')

𝐸₂

(τ-τ')

𝑑τ'

,

(2.49)

где 𝐸₂τ — вторая из интегральных показательных функций, определяемых равенством

𝐸

𝑛

τ

=

1

𝑒

-τ𝑥

𝑑𝑥

𝑥𝑛

.

(2.50)

Интегральное уравнение Милна рассматривалось многими авторами. Наиболее полное исследование принадлежит Хопфу, который нашёл, что точное решение этого уравнения имеет вид

𝑆(τ)

=

3

4

𝐹

τ

+

𝑞(τ)

(2.51)

где 𝑞(τ) — функция, монотонно изменяющаяся в небольших пределах между

𝑞(0)

=

1

√3

=

0,58

и

𝑞(∞)

=

0,71

.

Представляет интерес сравнение приближённых выражений для 𝑆(τ), полученных выше при помощи методов Шварцшильда — Шустера, Эддингтона и Чандрасекара (в первом приближении), с точной формулой (2.51). Эти приближённые выражения даются соответственно формулами (2.24), (2.33) и (2.40). Мы видим, что наибольшей точностью обладает формула (2.40). Значения функции 𝑆(τ), найденные по этой формуле при τ=0 и при больших τ, а именно

𝑆(0)

=

√3

4

𝐹

(2.52)

и

𝑆(τ)

=

3

4

𝐹τ

при

τ

1

,

(2.53)

совпадают с точными значениями 𝑆(τ). Формула (2.33) даёт точные значения функции 𝑆(τ) лишь при τ≫1. Значения 𝑆(τ), полученные по формуле (2.24), отличаются от точных значений как при τ=0, так и при τ≫1.

5. Распределение яркости по диску звезды.

Рис. 3

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука