Описанные способы определения средней концентрации свободных электронов в звёздных атмосферах не отличаются большой точностью (хотя бы вследствие неопределённости самого понятия величины 𝑛𝑒). Однако на практике для грубой оценки 𝑛𝑒 эти способы применяются весьма часто. В частности, по числу наблюдаемых бальмеровских линий в звёздных спектрах можно легко отделить звёзды-карлики от звёзд-гигантов. В атмосферах карликов концентрация частиц значительно больше, чем в атмосферах гигантов, а значит, величина 𝑖 должна быть меньше. Особенно малое число бальмеровских линий должно присутствовать в спектрах белых карликов, что вполне соответствует наблюдениям.
3. Турбулентность в атмосферах.
Изучение звёздных атмосфер методом кривых роста показало, что для многих звёзд значения параметра 𝑣 в несколько раз превосходят средние тепловые скорости атомов. Так возникало представление о существовании в звёздных атмосферах наряду с тепловым движением другого типа хаотического движения газа. Это движение было названо «турбулентным» (хотя оно и может отличаться от турбулентного движения в аэродинамическом смысле). Таким образом, полная скорость хаотического движения атомов газа в звёздной атмосфере определяется формулой
𝑣
=
√
𝑣₀²+𝑣
𝑡
²
,
(13.15)
где 𝑣₀ — средняя скорость теплового движения, равная
𝑣₀
=
⎛
⎜
⎝
2𝑘𝑇
𝑚𝑎
⎞½
⎟
⎠
,
(13.16)
и 𝑣𝑡 — скорость турбулентного движения.
Особенно большие турбулентные скорости были найдены у звёзд-сверхгигантов. Например, по определению Струве, в атмосфере ε Возничего 𝑣𝑡=20 км/с, а в атмосфере 17 Зайца 𝑣𝑡=67 км/с. Для сравнения укажем, что средние тепловые скорости атомов металлов в атмосферах звёзд порядка 1 км/с.
Вследствие турбулентных движений в звёздных атмосферах происходит также изменение профилей линий поглощения, а именно — расширение линий. В спектрах некоторых сверхгигантов слабые линии оказываются широкими и мелкими, а сильные линии — расширенными в их центральных частях, но лишёнными крыльев (этим они отличаются от линий в спектрах звёзд-карликов).
Однако для ряда звёзд отмечены большие расхождения между турбулентными скоростями, определёнными по эквивалентным ширинам (т.е. по кривым роста) и по полуширинам линий поглощения. Например, при изучении звезды δ Большого Пса по эквивалентной ширине было получено 𝑣𝑡=5 км/с, а по полуширине 𝑣𝑡=30 км/с. Для объяснения подобных расхождений была выдвинута та точка зрения, что в звёздных атмосферах ячейки турбулентности могут иметь различные масштабы. Если линейные размеры ячейки турбулентности малы по сравнению с толщиной атмосферы, то турбулентное движение влияет на линии поглощения совершенно так же, как тепловое движение. В этом случае не должно быть различий в турбулентных скоростях, найденных по эквивалентным ширинам и по полуширинам линий поглощения. Если же линейные размеры ячеек турбулентности превосходят толщину атмосферы, то турбулентное движение должно расширять линии поглощения, но не может увеличить их эквивалентные ширины. В этом случае влияние турбулентности на линии поглощения аналогично влиянию вращения звезды. Согласно такому взгляду турбулентное движение в атмосфере δ Большого Пса ближе подходит ко второму из указанных случаев.
Следует отметить, что спектроскопически определённая турбулентность большого масштаба является, по-видимому, особым типом конвекции.
Подробное исследование турбулентности в звёздных атмосферах было выполнено О. Струве и Су Шухуаном. В частности, они занимались определением масштабов турбулентных ячеек на основании зависимости между эквивалентной шириной и полушириной линии поглощения (см., например [91).
4. Вращение звёзд.
Вращение звезды вокруг собственной оси может быть установлено по виду спектра. Если звезда вращается, то части диска, удаляющиеся от нас, дают линию поглощения, смещённую в красную сторону спектра, а части диска, приближающиеся к нам, в фиолетовую. В целом вращающаяся звезда даёт линию поглощения, расширенную по сравнению с линией поглощения в спектре невращающейся звезды. Очевидно, что вращение звезды вызывает расширение всех линий. Поэтому эффект вращения легко отделяется, например, от эффекта Штарка, вызывающего заметное расширение лишь тех линий, которые особенно чувствительны к электрическому полю.
Рис. 14
Рассмотрим сначала вопрос о влиянии вращения на профиль линии поглощения. Пусть скорость вращения звезды на экваторе равна 𝑣, а ось вращения образует с лучом зрения угол 𝑖. Возьмём прямоугольную систему координат 𝑥, 𝑦, 𝑧 с началом в центре звезды, с осью 𝑧, направленной к наблюдателю, и с осью 𝑦, лежащей в плоскости, проведённой через ось вращения и луч зрения (рис. 14). Для упрощения записи будем считать, что радиус звезды равен единице.