Читаем Курс теоретической астрофизики полностью

Приведём некоторые формулы, описывающие явления, происходящие при распространении ударной волны. Пусть плотное облако (или оболочка) движется со скоростью 𝑣 в межзвёздном неионизованном газе. Перед облаком будет находиться сжатый газ, движущийся с той же скоростью 𝑣. Граница между сжатым и несжатым газом, называемая фронтом ударной волны, движется со скоростью 𝑉, превосходящей 𝑣. Если ударная волна распространяется в идеальном одноатомном газе, то, как показывают расчёты,

𝑉

=

4

3

𝑣

,

(33.33)

а плотность сжатого газа в четыре раза больше плотности несжатого газа. При сжатии газа происходит также повышение его температуры до значения, определяемого формулой

3

2

𝑘𝑇

=

μ𝑚𝙷𝑣²

2

.

(33.34)

Очевидно, что нагревание газа и сообщение ему движения происходит за счёт кинетической энергии облака, которое постепенно тормозится. Однако при получении приведённых формул не был принят во внимание тот факт, что нагретый сжатый газ может охлаждаться. Это охлаждение происходит вследствие того, что атомы возбуждаются при столкновениях со свободными электронами, а затем испускают кванты в спектральных линиях, выходящие из газа. Такой процесс представляет собой высвечивание газа. Структура ударных волн с высвечиванием впервые была рассмотрена С. Б. Пикельнером [3], а затем и другими авторами. Результаты этой теории отличаются от указанных выше. В частности, было найдено, что плотность сжатого газа может в десятки раз превзойти его первоначальную плотность. Возможно, что свечение некоторых диффузных туманностей объясняется высвечиванием газа после прохождения ударной волны.

Существующие в Галактике турбулентные движения газа изучаются особыми статистическими методами. В простейшем случае считается, что турбулентное движение характеризуется хаотическим перемещением газовых масс, при котором энергия движений больших масштабов полностью передаётся движениям меньших масштабов, превращаясь в конце концов в тепловую энергию. В этом случае, согласно А. Н. Колмогорову, относительная скорость движения турбулентных масс 𝑣 связана с расстоянием между ними 𝑙 соотношением

𝑣

(ε𝑙)¹

/

³

.

(33.35)

где ε — энергия, получаемая одним граммом вещества за 1 с от источников турбулентности. Анализ наблюдательных данных о движении межзвёздного газа приводит к выводу, что закон (33.35) в общих чертах выполняется до значения 𝑙≈100 пс. При этом для энергии, приобретаемой газом, должно быть принято значение ε≈10⁻³ эрг/г⋅с. При более строгом исследовании турбулентности в Галактике следует учитывать влияние на неё магнитного поля (см. [31).

Движение газа и пыли в Галактике может вызываться рядом причин. Одной из них является давление излучения звёзд, довольно сильно действующее на пылевые частицы. В качестве другой причины можно указать расширение оболочек новых и сверхновых звёзд. Наибольшую же роль в сообщении движений газу и пыли в межзвёздном пространстве играет, по-видимому, расширение зон ионизованного водорода, окружающих звёзды класса O.

§ 34. Космическое радиоизлучение

1. Излучение зоны 𝙷 II.

Излучение межзвёздной среды наблюдается как в оптической области спектра, так и в радиодиапазоне. Наблюдения в радиодиапазоне дают ценные сведения не только о физическом состоянии межзвёздной среды, но также о её структуре и движении. Особенно важно то, что мы можем наблюдать радиоизлучение от очень далёких частей Галактики, которые совершенно недоступны для оптических наблюдений. Объясняется это тем, что межзвёздная пыль практически прозрачна в радиочастотах.

Сначала остановимся на радиоизлучении, идущем от зон ионизованного водорода. Такое излучение, наблюдаемое в сантиметровом и дециметровом диапазонах, является тепловым (в метровом диапазоне добавляется ещё нетепловое излучение, о котором речь будет идти ниже). Так как радиоизлучение спокойного Солнца также имеет тепловую природу, то при рассмотрении теплового радиоизлучения зон 𝙷 II мы можем воспользоваться формулами, приведёнными в § 18.

Допустим, что радиоизлучение идёт к нам от облака ионизованного водорода и на пути от облака до наблюдателя поглощение отсутствует. Обозначим через εν объёмный коэффициент излучения и через αν объёмный коэффициент поглощения в облаке. Если излучение является тепловым, то мы имеем

εν

αν

=

𝐵

ν

(𝑇

𝑒

)

=

2ν²

𝑐²

𝑘𝑇

𝑒

,

(34.1)

где 𝑇𝑒 — температура электронного газа. Выше было установлено, что в зонах 𝙷 II величина 𝑇𝑒 почти постоянна (и близка к 10 000 K). Поэтому для интенсивности излучения, выходящего из облака, можем написать

𝐼

ν

=

𝐵

ν

(𝑇

𝑒

)

1

-

exp

-

τ

ν

,

(34.2)

где τν⁰ — оптический путь луча в облаке. Для вычисления величины τν⁰ следует воспользоваться формулой (18.9), на основании которой подучаем

τ

ν

=

𝑠₀

0

α

ν

𝑑𝑠

=

2⁴π²𝑒⁶

3√3𝑐(2π𝑚𝑘𝑇𝑒/²

𝑔ν

ν²

𝑠₀

0

𝑛

𝑒

𝑛⁺

𝑑𝑠

,

(34.3)

где 𝑠₀ — геометрическая «толщина» облака.

Как мы знаем, интенсивность излучения 𝐼ν принято выражать через яркостную температуру 𝑇ν посредством соотношения (18.2). Поэтому формулу (34.2) можно переписать в виде

𝑇

ν

=

𝑇

𝑒

1

-

exp

-

τ

ν

.

(34.4)

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука