Читаем Курс теоретической астрофизики полностью

Для выяснения физических условий на планетах большое значение имеет исследование радиоизлучения планет. Радиоизлучение различных длин волн идёт к нам от разных атмосферных слоёв, что позволяет судить об изменении физических условий с глубиной в атмосфере. Для некоторых длин волн в радиодиапазоне атмосфера может быть совершенно прозрачной, хотя она и непрозрачна в оптической области спектра. По радиоизлучению этих длин волн можно получить сведения о невидимой для нас поверхности планеты. К настоящему времени радиоастрономическими методами наиболее подробно изучены Венера и Юпитер. Такое изучение привело к ряду важных и неожиданных результатов.

Особенно интересен тот факт, что для Венеры в сантиметровом диапазоне получается очень высокая яркостная температура — порядка 600 K. Эта температура гораздо выше той, которая находится по потоку излучения в инфракрасном участке спектра (и равной, как мы знаем, примерно 230 K). По-видимому, радиоизлучение Венеры имеет тепловую природу, так как оно не обнаруживает систематических изменений и не содержит значительной поляризованной компоненты. Объяснение столь высокой температуры, определяемой по радиоизлучению, состоит в том, что она относится к поверхности планеты; нагревание же поверхности вызвано так называемым «парниковым эффектом» (о котором речь будет ниже).

В миллиметровом диапазоне температура Венеры оказывается порядка 300—400 К. Согласно указанной интерпретации она относится к средним слоям атмосферы.

Радиоизлучение Юпитера является очень сложным. При 3 см яркостная температура составляет примерно 140 K, т.е. она близка к температуре, находимой по излучению в инфракрасной области спектра. На этом основании излучение Юпитера при 3 см можно считать тепловым. Однако наблюдения радиоизлучения Юпитера в интервале от 3 см до 70 см показали, что поток этого излучения в единичном интервале частот слабо зависит от длины волны. Между тем поток теплового излучения (при постоянной температуре и постоянных размерах источника) должен быстро убывать с ростом длины волны, так как интенсивность теплового излучения определяется формулой (18.1). Поэтому был сделан вывод о нетепловом характере радиоизлучения Юпитера в рассматриваемом диапазоне. Трудно допустить, что это излучение является тепловым и идёт к нам от слоёв с разной температурой, так как при 70 см яркостная температура равна 30 000 К, т.е. очень велика.

Предположение о нетепловой природе излучения Юпитера в интервале длин волн от 3 до 70 см подтверждается следующими важными фактами: 1) поток этого излучения меняется с течением времени, 2) это излучение линейно поляризовано (на волне 31 см степень поляризации около 30%, а электрический вектор примерно параллелен экватору планеты), 3) размеры излучающей области приблизительно в три раза превосходят оптический диаметр Юпитера. Последний из этих фактов заслуживает особого внимания, так как он лежит в основе представления о радиационных поясах Юпитера (подобных радиационным поясам Земли, открытым при помощи искусственных спутников). Предполагается, что радиационные пояса образуются благодаря захвату заряженных частиц магнитным полем планеты и наблюдаемое дециметровое радиоизлучение Юпитера является магнитотормозным излучением электронов.

Наблюдения также показывают, что от Юпитера идёт сильное спорадическое радиоизлучение. Всплески радиоизлучения продолжительностью порядка 1 с обнаруживаются на волнах, равных нескольким десяткам метров. Это излучение поляризовано и возникает в некоторых локальных источниках. Для объяснения спорадического радиоизлучения Юпитера предлагаются такие же механизмы, как и для объяснения спорадического радиоизлучения Солнца, т.е. магнитотормозное излучение электронов и собственные колебания плазмы.

3. Модели планетных атмосфер.

Результаты наблюдений планет в разных участках спектра (видимом, инфракрасном и радиодиапазоне) служат основой для построения моделей планетных атмосфер. Такие модели разрабатывались для ряда планет (Венеры, Марса, Юпитера). Здесь в виде примера мы лишь кратко рассмотрим модель атмосферы Венеры.

При разработке модели планетной атмосферы задаётся некоторая схема строения атмосферы, её химический состав и механизм переноса энергии. В результате расчёта определяется распределение плотности и температуры в атмосфере. Это позволяет вычислить оптические глубины в атмосфере для разных частот, а затем и интенсивности выходящего из атмосферы излучения в разных участках спектра. Сравнение теоретических и наблюдённых интенсивностей излучения даёт возможность сделать проверку рассчитанной модели.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука