Читаем Курс теоретической астрофизики полностью

Радиоизлучение Солнца было открыто во время второй мировой войны и с тех пор очень интенсивно исследуется. Весьма быстро было установлено, что это излучение идёт к нам от короны и верхних слоёв хромосферы. Таким образом, по наблюдаемому радиоизлучению Солнца мы можем судить о физических процессах в самых внешних его частях. Важно подчеркнуть одно существенное преимущество радионаблюдений короны и хромосферы перед их оптическими наблюдениями: в то время как наблюдениям в оптической области спектра сильно мешает большая яркость фотосферы, при наблюдениях в области радиоволн этого не происходит (так как сами эти части Солнца и являются «фотосферой» для радиоизлучения).

Наблюдения радиоизлучения Солнца с земной поверхности могут вестись в довольно широком интервале длин волн — от нескольких миллиметров до нескольких десятков метров. Излучение более коротких волн поглощается в земной атмосфере (молекулами O и HO), а излучение более длинных волн отражается от земной ионосферы.

Исследование радиоизлучения Солнца производится при помощи радиотелескопов, позволяющих измерить поток солнечного излучения определённой длины волны. Для измерения интенсивностей радиоизлучения, идущего от разных мест солнечного диска, приходится применять радиотелескопы больших размеров или радиоинтерферометры. Это вызвано тем, что разрешающая сила, определяемая отношением диаметра отверстия телескопа к длине волны излучения, в радиодиапазоне гораздо меньше, чем в оптике.

Очень ценные сведения о распределении яркости по диску в радиочастотах получаются также во время солнечных затмений. Заметим, что именно при наблюдениях солнечного затмения 1947 г. С. Э. Хайкин и Б. М. Чихачев впервые экспериментально доказали корональную природу радиоизлучения Солнца в метровом диапазоне волн (так как во время полного затмения поток радиоизлучения оказался равным примерно 40% потока вне затмения).

Измеренную интенсивность радиоизлучения I обычно характеризуют яркостной температурой T, т.е. представляют её в виде I=B(T), где B(T) — планковская интенсивность при температуре T. Так как для радиочастот h/kT1, то формула Планка переходит в формулу Рэлея — Джинса:

B

(T)

=

2^2

c^2

kT

.

(18.1)

Поэтому яркостная температура определяется соотношением

I

=

2^2

c^2

kT

.

(18.2)

Измеренный поток радиоизлучения Солнца может быть записан в виде

H

=

I

.

(18.3)

где I — средняя интенсивность излучения и — телесный угол, под которым виден солнечный диск. Понимая под I планковскую интенсивность, соответствующую температуре T, мы можем эту температуру принять в качестве меры потока излучения. Величина T, представляет собой среднюю яркостную температуру для частоты . Пользуясь формулой (18.2), имеем

H

=

2^2

c^2

k

T

.

(18.4)

Так как =(R/r)^2 где R — радиус Солнца и r — расстояние от Солнца до Земли, то вместо (18.4) получаем

H

=

T

r

^2

2^2

c^2

k

T

.

(18.5)

Светимость же Солнца в частоте представляется в виде

L

=

4^2

R^2

2^2

c^2

k

T

.

(18.6)

Как показывают наблюдения, радиоизлучение Солнца состоит из двух компонент: 1) радиоизлучение спокойного Солнца (невозмущенная компонента) и 2) спорадическое радиоизлучение Солнца (возмущённая компонента). Первая компонента почти постоянна (точнее говоря, слабо меняется в течение цикла солнечной активности). Как увидим ниже, она является тепловым излучением короны и хромосферы. Вторая компонента испытывает как медленные, так и очень быстрые изменения с течением времени. Её происхождение связано с различными активными процессами на Солнце: пятнами, хромосферными вспышками и т.д.

Измерение потоков радиоизлучения Солнца приводит к тому результату, что для невозмущённой компоненты яркостная температура T оказывается порядка 10 кельвинов в сантиметровом диапазоне и порядка 10 кельвинов — в метровом. Что же касается возмущённой компоненты, то для неё в метровом диапазоне иногда получаются яркостные температуры порядка 10—10 кельвинов и больше. Иными словами, поток возмущённого радиоизлучения Солнца иногда в 100—1 000 и больше раз превосходит поток радиоизлучения спокойного Солнца.

В дальнейшем речь будет идти в основном о невозмущённой компоненте солнечного радиоизлучения, а возмущённая компонента будет рассмотрена весьма кратко. Подробное рассмотрение проблемы радиоизлучения Солнца содержится в уже упомянутых монографиях [2], [3], [7] и особенно в книге В. В. Железнякова [8]. Общая теория распространения радиоизлучения в плазме изложена в монографии В. Л. Гинзбурга [9].

2. Радиоизлучение спокойного Солнца.

Приступая к интерпретации наблюдательных данных о солнечном радиоизлучении, мы сначала ответим на вопрос, в каких слоях Солнца оно возникает. Для этого нам следует определить оптические глубины различных слоёв в области радиочастот. Очевидно, что излучение может доходить до наблюдателя лишь от тех слоёв, оптическая глубина которых не превосходит по порядку единицу.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука