Читаем Курс теоретической астрофизики полностью

Теория ионизации атомов в короне была разработана И. С. Шкловским [7]. Произведённые им вычисления по формуле (17.25) для водорода привели к значениям величины n/n порядка 10 при Te10 кельвинов и порядка 10 при Te10 кельвинов (когда ne10 см^3). Эти значения величины n/n примерно в миллион раз меньше её значений в случае термодинамического равновесия при тех же температурах и плотностях.

Определение относительных чисел атомов металлов в разных стадиях ионизации также может быть сделано по формуле (17.25) (в которой под n теперь надо понимать концентрацию атомов в данной стадии ионизации, а под n — в последующей). Однако в этом случае для коэффициентов B и C приходится пользоваться приближёнными выражениями, так как квантовомеханические вычисления этих величин очень трудны. В табл. 22 приведены для примера значения относительных чисел атомов железа в разных стадиях ионизации при различных электронных температурах.

Таблица 22

Ионизация железа в короне Te·10

0,3

0,5

0,6

0,7

0,8

1,0

1,2

1,4

Fe X

Fe IX

0,092

0,83

1,6

2,9

6,0

13

30

-

Fe XI

Fe X

-

0,29

0,77

1,1

2,7

8

,0

12

22

Fe XII

Fe XI

-

0,10

0,30

0,52

1,1

3

,5

7

,2

12

Fe III

Fe II

-

0,030

0,10

0,29

0,47

1

,4

3

,4

7

,2

Fe XIV

Fe XIII

-

0,010

0,039

0,13

0,31

0

,66

2

,0

4

,3

Fe XV

Fe XIV

-

0,0033

0,014

0,047

0,12

0

,40

0

,82

1

,7

Мы видим, что при данной электронной температуре число атомов с возрастанием стадии ионизации сначала растёт, а затем убывает. Например, при Te=800 000 K наибольшее число атомов железа находится в стадии Fe XII.

Согласно наблюдениям, в спектре короны присутствуют линии Fe X — Fe XV, причём излучение в линиях разных ионов идёт от разных областей короны. На основании таблицы можно сказать, что температура короны должна быть порядка миллиона кельвинов, причём в разных областях она различна. Например, области короны, светящиеся в линиях Fe X — Fe XI, должны иметь температуру порядка 600 000 K, а области, светящиеся в линиях Fe XIII — Fe XIV, — температуру порядка 1 200 000 K. Иногда в спектре одного и того же места короны видны линии атомов, находящихся в весьма далёких друг от друга стадиях ионизации. Это можно объяснить тем, что луч зрения пересекает области с разными температурами.

Кроме рассмотренной выше обычной рекомбинации, в короне может играть существенную роль так называемая «диэлектронная рекомбинация». Этот процесс состоит в том, что данный ион возбуждается свободным электроном с энергией, меньшей энергии возбуждения, и электрон оказывается связанным с ионом. Иными словами, при таком процессе образуется атом или ион в более низкой стадии ионизации с двумя возбуждёнными электронами. Число диэлектронных рекомбинаций, происходящих в 1 см^3 за 1 с, равно nenC, т.е. даётся таким же выражением, как и число обычных рекомбинаций, но с другим значением C. Учёт диэлектронных рекомбинаций при изучении степени ионизации атомов в короне приводит к заключению, что температура короны должна быть примерно вдвое выше температуры, определённой ранее (см., например, [9]). Следует отметить, что диэлектронные рекомбинации могут иметь значение и для некоторых других объектов (высокотемпературных туманностей, окрестностей квазаров и т. п.).

После рассмотрения проблемы ионизации атомов в короне обратимся к вопросу о возбуждении ионов. При этом пока будем говорить лишь о возбуждении тех уровней основного состояния иона, при переходах с которых возникают наблюдаемые запрещенные линии в спектре короны. Возбуждение указанных уровней производится двумя путями: 1) при столкновениях со свободными электронами, 2) при поглощении излучения, идущего от фотосферы (второй механизм возбуждения играет некоторую роль во внешних частях короны). Возвращение иона на нижний уровень происходит как при спонтанных переходах, так и при ударах второго рода. Из условия постоянства числа ионов на каждом из уровней можно найти отношение числа ионов на k-м уровне к числу ионов на первом уровне, т.е. величину nk/n. Здесь мы не будем останавливаться на этих расчётах, так как подобным же образом находится распределение ионов по уровням в газовых туманностях, о чем подробно говорится в §24.

Знание отношения nk/n даёт возможность перейти от концентрации ионов на возбуждённом уровне nk (находимой по измеренной интенсивности эмиссионной линии, как в случае хромосферы) к концентрации ионов на первом уровне n. Суммирование чисел n для всех стадий ионизации позволяет определить полную концентрацию атомов данного элемента. Разделив эту концентрацию на ne, мы получаем отношение числа атомов рассматриваемого элемента к числу атомов водорода (так как ne приближённо равно концентрации протонов).

Указанным способом было определено отношение числа атомов металлов к числу атомов водорода в короне. Оказалось, что это отношение не зависит от высоты и примерно такое же, как в обращающем слое. Этот факт представляет большой интерес, так как он свидетельствует о перемешивании вещества в короне.

7. Ультрафиолетовое и рентгеновское излучения.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука