Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

20, 21, 22, 23, 24, 25, 26

30, 31, 32, 33, 34, 35, 36

1,010; 1,011; 1,012; 1,013; 1,014; 1,015; 1,016

Маленькое число, расположенное вверху справа от числа нормального размера, называется показателем степени (экспонентой) и указывает, сколько раз необходимо умножить нормальное число на себя. Последовательности, в которых величина растет со скоростью, пропорциональной ее значению, демонстрируют экспоненциальный рост, так как у каждого очередного члена ряда показатель степени увеличивается на единицу.

Когда величина растет по экспоненциальному закону, то чем больше она становится, тем быстрее увеличивается, поэтому всего после нескольких шагов она может достичь ошеломляющего значения. Давайте посмотрим, что произойдет с листом бумаги, если складывать его вдвое. В результате каждого очередного сгибания лист становится толще в два раза. Поскольку толщина листа бумаги составляет примерно 0,1 миллиметра, вследствие каждого сгибания она будет увеличиваться так:

0,1; 0,2; 0,4; 0,8; 1,6; 3,2; 6,4…

Это та же последовательность, что и размещенная выше, каждый член которой в два раза больше предыдущего, но со смещением десятичного знака на одну позицию. Поскольку стопка бумаги все время утолщается, каждое очередное сгибание требует больших усилий, и к седьмому разу согнуть бумагу уже практически невозможно. В этот момент толщина бумаги в 128 раз больше одного листа, что эквивалентно толщине 256-страничной книги.

Но продолжим процесс, чтобы увидеть (по крайней мере, теоретически), насколько увеличится толщина стопки бумаги в сложенном состоянии. Сложив бумагу еще шесть раз, мы получим стопку высотой в один метр. Еще шесть сгибаний дадут нам стопку высотой с Триумфальную арку, а после очередных шести она поднимется в небо на 3 километра. Какой бы обычной ни казалась процедура удвоения, ее многократное применение дает невероятный результат. После 42 сгибаний наша бумага оставит позади Луну, а всего после 92 достигнет края обозримой Вселенной.

Но Альберта Бартлетта интересуют не столько другие планеты, сколько планета, на которой мы живем. В своей лекции он объяснил суть экспоненциального роста с помощью невероятно убедительной аналогии. Представьте себе бутылку с бактериями, численность которых увеличивается в два раза каждую минуту. В 11 часов утра в бутылке находится всего одна бактерия, а через час, к полудню, бутылка будет полностью заполнена бактериями. Анализ данного процесса в обратном порядке показывает, что в 11:59 бутылка заполнена бактериями наполовину, в 11:58 — на четверть и т. д. «Если бы вы были обычной бактерией, живущей в этой бутылке, — спрашивает Бартлетт, — в какой момент времени вы поняли бы, что свободного пространства вот-вот не останется?» В 11:55 бутылка кажется почти пустой: она заполнена всего на , или около 3 процентов, что оставляет 97 процентов свободного места для роста популяции. Осознают ли бактерии, что они всего в пяти минутах от стопроцентной заполненности бутылки? Бутылка Бартлетта — это предостережение жителям Земли. Если население планеты будет увеличиваться по экспоненте, свободного места на ней не останется гораздо быстрее, чем кажется.

Возьмем в качестве примера историю города Боулдер. За период с 1950 года (когда туда переехал Бартлетт) по 1970 год численность его населения в среднем ежегодно увеличивалась на шесть процентов. Для того чтобы определить численность населения к концу первого года, необходимо первоначальное значение умножить на 1,06, к концу второго года — на (1,06)2, к концу третьего года — на (1,06)3 и т. д., а значит, здесь мы имеем экспоненциальную последовательность.

На первый взгляд кажется, что сами по себе шесть процентов — не так много, но за два десятилетия это привело к увеличению численности населения города более чем в три раза, с 20 000 до 67 000 человек. «Это ужасающий рост, — сказал Бартлетт, — и с тех пор мы делаем все возможное, чтобы замедлить его» (в настоящее время население города составляет почти 100 000 жителей). Страстное желание Бартлетта объяснить людям суть экспоненциального роста обусловлено его решимостью сохранить качество жизни в родном городе, расположенном в горах.

Важно помнить, что если процентный рост за единицу времени представляет собой постоянную величину, то он подчиняется экспоненциальному закону. Следовательно, если даже рассматриваемая величина начинает расти достаточно медленно, этот рост резко ускорится, и в ближайшее время значение величины станет настолько большим, что поначалу это покажется противоречащим здравому смыслу. Практически все экономические, финансовые и политические показатели (такие как объем продаж, прибыль, курс акций, ВВП и численность населения) рассчитываются в виде относительного изменения за единицу времени, а значит, экспоненциальный рост очень важен для понимания того, как устроен наш мир.

Перейти на страницу:

Похожие книги