Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

В Индии в середине первого тысячелетия нашей эры астрономия процветала по той же причине, что и в Вавилоне: у индийцев тоже была позиционная система счисления, позволяющая им эффективно описывать как очень большие, так и очень малые числа. На самом деле индийская система счисления даже превосходила вавилонскую, поскольку основывалась на десятках, что было более удобно, чем группы по шестьдесят цифр. Кроме того, индийцы считали ноль полноправным числом, а не символом-заполнителем незначащих разрядов чисел, как вавилоняне. Индийские астрономы также пользовались таблицами длин сторон треугольников. Однако вместо хорд они их составили для полухорд. Как показано на верхнем рисунке, полухорда — это сторона прямоугольного треугольника, в котором радиус окружности представляет собой гипотенузу, а другая сторона — часть биссектрисы, перпендикулярной хорде. Концепция полухорд удобнее для расчетов, поскольку, как мы уже знаем, любой треугольник делится на прямоугольные треугольники. Позиционная система счисления индийцев и их знания о длине сторон треугольников получили распространение в арабском мире и со временем достигли Европы. Система представления чисел с помощью цифр от 0 до 9, которые мы используем в наше время, так же как и выбор полухорд, берет свое начало в индийской системе счисления.

В VI столетии до нашей эры Фалес уловил суть самого важного свойства треугольников, лежащего в основе всего, что мы о них знаем, в частности, что при равных углах отношения их сторон не меняются.

А теперь представим, что мы перенеслись на две тысячи лет вперед, в то время, когда математики изобрели три новые концепции, основанные на этом свойстве: синус, косинус, тангенс.

SOH-CAH-TOA![67]

Тем, кто забыл это мнемоническое правило, хочу напомнить формулы:

Синус, косинус и тангенс — это тригонометрические функции, применяемые по отношению к прямоугольным треугольникам, таким как треугольник на представленном выше рисунке. Синус угла α — это отношение противолежащего катета к гипотенузе; косинус угла α — отношение прилежащего катета к гипотенузе; тангенс угла α — отношение противолежащего катета к прилежащему.

Если понадобится увеличить изображенный на рисунке треугольник до нужного размера, пропорции между сторонами останутся неизменными, а это значит, что синус, косинус и тангенс угла α, которые принято записывать как «sin α», «cos α» и «tan α»[68], представляют собой постоянную величину. Тригонометрические функции — это своего рода идентификационный код, описывающий форму прямоугольных треугольников: она зависит от внутренних углов, поэтому, если они неизменны, не изменяются и значения синуса, косинуса и тангенса.

При внимательном рассмотрении приведенных выше рисунков связь между синусом и полухордой становится очевидной. Синус угла β представляет собой отношение противолежащей стороны к гипотенузе, которое равно отношению полухорды к радиусу. Если радиус равен 1, тогда синус угла β — это и есть полухорда.

Согласно этимологии слова «синус», оно пришло к нам из Индии. На санскрите полухорда обозначалась как jya-ardha, или «половина тетивы». Арабы транслитерировали это слово как jiba — лишенное смысла слово, звучащее почти как jaib — «пазуха», или «углубление». При переводе арабских текстов на латынь термин jaib был переведен как sinus, что означало складку тоги над грудью женщины. В английском языке это слово трансформировалось в sine.

Ниже представлена небольшая тригонометрическая таблица. Углам с изящными значениями не всегда соответствуют столь же изящные значения тригонометрических функций. При величине угла от 0 до 90 градусов значение синуса находится в пределах от 0 до 1, косинуса — от 1 до 0, а тангенса — от 0 до бесконечности. Первые тригонометрические таблицы были составлены в XV–XVI веках с использованием геометрических и математических методов, что подготовило почву для золотого века треугольника.

sin 1° = 0,0175/cos 1° = 0,9998/tan 1° = 0,0175

sin 10° = 0,1736/cos 10° = 0,9848/tan 10° = 0,1763

sin 30° = 0,5000/cos 30° = 0,8660/tan 30° = 0,5774

sin 45° = 0,7071/cos 45° = 0,7071/tan 45° = 1,0000

sin 60° = 0,8660/cos 60° = 0,5000/tan 60° = 1,7321

sin 90° = 1,0000/cos 90° = 0,0000/tan 90° = ∞

При отсутствии необходимых технических приспособлений можно применить новые математические инструменты. Например, если мы хотим измерить высоту дерева, мы решаем эту задачу при помощи прямоугольного треугольника, как показано ниже.

Если Р — это точка на земле, с которой видна верхушка дерева, а α — угол наблюдения, то:

Эту формулу можно преобразовать в следующее уравнение:

h = d × tan α

Как правило, такие уравнения записываются так:

h =d tan α

Топографу эпохи Возрождения следовало измерить угол α с помощью транспортира и визира, после чего ему лишь оставалось найти в тригонометрической таблице значение tan α. Расстояние d он мог измерить посредством мерной ленты или куска веревки. Вот и весь секрет того, как вычислить высоту дерева, не отрываясь от земли.

Перейти на страницу:

Похожие книги