Херш буквально помешан на втискивании математики в социальность; в своей книге «Что же такое математика?» («Oxford University Press», 1997) пишет даже (крепитесь!), что 8+5 не обязательно равняется 13, ибо у отдельных небоскребов нет тринадцатого этажа. Стало быть, если вы доедете на лифте до восьмого этажа, а потом подниметесь еще на пять этажей, вы окажетесь на четырнадцатом этаже. Вероятно, Херш предполагает тем самым, что в субкультуре некоторых высотных зданий законы арифметики постоянно нарушаются?
Надо ли мне отмечать здесь, что с тех пор, как Декарт арифметизировал геометрию, ее модели тоже в принципе возможно строить с помощью камешков? И в самом деле, Вселенная заполнена моделями почти всех математических областей, объектов и теорий. Любой тополог сумеет доказать, построив грубую модель из конверта и затем разрезав ее пополам, что рассечение бутылки Клейна на две равные части даст две зеркальные ленты Мёбиуса [80].
Для комплексных чисел и производных функций, возможно, не существует материальных моделей, однако и эти объекты вкраплениями испещряют Вселенную. Ньютон и Лейбниц, если выражаться обиходным языком, изобрели дифференциальное и интегральное исчисление, но в более глубинном смысле они
Подобные рассуждения грешат таким же искажением научного языка, как и заявления, что астрономы, мол, изучают «нездешние» образования, поскольку телескопы — часть человеческой культуры, не говоря уж о том, что и вся астрономия тоже является ее частью. Отсюда недалеко до утверждений, что и вся Вселенная существует лишь потому, что ее наблюдают человеческие цивилизации (а не наоборот — мы существуем, потому что нас создала Вселенная).
Возможно, кардинальные числа, введенные Кантором
[82], не находятся «здесь», но кто знает?.. Не исключено, что они скрываются где-нибудь в космосе. Подобно физикам, математики часто совершают открытия, исследуя материальные модели. Классический пример: Фрэнк Морли вывел свою «теорему Морли», изучая углы бумажных моделей произвольных треугольников — моделей таких же «здешних», как камни или звезды. Никоим образом нельзя сказать, будто Морли
В своей статье Херш справедливо называет меня теистом. И добавляет, что я верю в действенность молитвы. Атеисту Хершу это кажется оскорблением. Что ж, все зависит от значения слова «действенность». Я не верю, что если кто-нибудь помолится о победе футбольной команды или о выздоровлении любимого человека, больного раком, то Господь приложит десницу к Вселенной и тут же ее изменит. Я могу допустить, что Бог вполне способен менять вероятности исхода событий на квантовом уровне, — в наши дни эта догадка популярна среди теистов, — но все же я склонен сомневаться и в этом.
Однако я в самом деле считаю, что молитвы о прощении оправданны, а молитвы о даровании мудрости помогают принимать верные решения. Гилберт Честертон замечает где-то, что для атеиста настанет грустный день, когда с ним произойдет что-то чудесное, а ему будет некого за это поблагодарить.
Херш пишет также, что как-то раз я обвинил его в сталинизме. Не могу себе представить, как бы я мог такое сделать. Если все-таки сделал — приношу свои извинения. Возможно, я однажды напомнил ему душераздирающую сцену из оруэлловского «1984», где чиновник ухитряется, пытая узника, заставить того поверить, что, когда два пальца прибавляют к двум, появляется еще и пятый.
Кроме того, Херш заявляет: один раз я обвинил его в том, что он солипсист. И снова я не совсем понимаю, что он имеет в виду. Не исключаю, что я описывал его антиреализм как туманную разновидность социального (коллективного) солипсизма. Херш — большой поклонник статьи антрополога Лесли Уайта «Место математической реальности». Ее место, как заявляет Уайт, не во внешнем мире, а в человеческой культуре. Математические теоремы сходны в этом смысле с правилами дорожного движения, модами, живописью, музыкой и т. п.