Читаем Код. Тайный язык информатики полностью

Цифры, которыми мы пользуемся сегодня, называются индо-арабскими. Они возникли в Индии, но были занесены в Европу арабскими математиками. Особенно прославился персидский математик Мухаммад ибн Муса аль-Хорезми (от имени которого происходит слово «алгоритм»), написавший около 825 года книгу по алгебре, где пользовался индийскими цифрами. Эта книга была переведена на латынь около 1120 года, оказала большое влияние на Европу и стимулировала переход с римских цифр на современные.

Индо-арабская система чисел отличалась от более ранних.

Индо-арабская система называется позиционной, то есть любая цифра может обозначать в ней разное количество в зависимости от того, в какой части числа стоит. Положение цифры в числе не менее (и даже более) важно, чем значение самой цифры. И в 100, и в 1 000 000 всего по одной единице, но всем известно, что миллион гораздо больше сотни.

Практически во всех ранних системах счисления было нечто, чего нет в индо-арабской системе, а именно: отдельный символ для обозначения десятки. В нашей системе счисления такой символ отсутствует.

С другой стороны, практически во всех ранних числовых системах отсутствовало кое-что, имеющееся в индо-арабской системе и, по сути, более важное, чем символ десятки, — символ нуля.

Да, ноль. Скромный ноль, несомненно, одно из важнейших изобретений в истории чисел и математики. Он обеспечивает позиционную запись, поскольку позволяет отличить 25 от 205 и от 250. Ноль упрощает многие математические действия, неудобные в непозиционных системах, особенно умножение и деление.

Вся структура индо-арабских чисел проясняется, если обратить внимание, как мы их произносим. Например, 4825: «Четыре тысячи восемьсот двадцать пять». Это означает:

четыре тысячи,

восемь сотен,

два десятка

и еще пять.

Либо можно разложить это число на компоненты, например:

4825 = 4000 + 800 + 20 + 5.

Или еще мельче, вот так:

4825 = 4 × 1000 +

8 × 100 +

2 × 10 +

5 × 1.

Или, воспользовавшись степенями десятки, записать следующее:

4825 = 4 × 103 +

8 × 102 +

2 × 101 +

5 × 100.

Напоминаю: любое число в степени 0 равно единице.

Каждая позиция в многозначном числе имеет определенное значение, как показано на следующей схеме. В семи окошках можно записать любое число от 0 до 9 999 999.

Каждая позиция соответствует степени десятки. Специального символа для десятки не требуется, поскольку 1 просто ставится в нужную позицию, а 0 используется в качестве символа-заполнителя.

Самое замечательное в данном случае в том, что дробные величины, обозначаемые цифрами после десятичной запятой, подчиняются той же закономерности. Число 42 705,684 равно:

4 × 10 000 +

2 × 1000 +

7 × 100 +

0 × 10 +

5 × 1 +

6 ÷ 10 +

8 ÷ 100 +

4 ÷ 1000.

Это число можно записать и без деления:

4 × 10 000 +

2 × 1000 +

7 × 100 +

0 × 10 +

5 × 1 +

6 × 0,1 +

8 × 0,01 +

4 × 0,001.

Или при помощи степеней десятки:

4 × 104 +

2 × 103 +

7 × 102 +

0 × 101 +

5 × 100 +

6 × 10–1 +

8 × 10–2 +

4 × 10–3.

Обратите внимание: сначала степень доходит до нуля, а затем получает отрицательные значения.

Известно, что 3 плюс 4 равно 7. Аналогично 30 плюс 40 равно 70, 300 плюс 400 равно 700 и 3000 плюс 4000 равно 7000. В этом и заключается красота индо-арабской системы. Складывая сколь угодно длинные десятеричные числа, мы фактически решаем эту задачу поэтапно. На каждом этапе мы всего лишь складываем однозначные числа. Именно поэтому кто-то давным-давно заставлял вас запоминать таблицу сложения.

Найдите в верхнем ряду и в левом столбце два числа, которые хотите сложить. Следуйте от них по прямой к центру, пока линии не пересекутся, и получите сумму. Например, 4 плюс 6 равно 10.

Аналогично, если требуется перемножить два десятеричных числа, выполняется более сложная процедура, которая тем не менее подразделяется на мелкие этапы, связанные с перемножением однозначных десятеричных чисел. Помните, в начальной школе мы должны были учить и таблицу умножения.

Главная прелесть позиционной нотации не в том, как хорошо она работает, а в том, как хорошо она применима в системах счисления, основанных не на десятке. Наша система счисления кому-то может показаться неудобной. Например, у большинства героев-мультяшек всего по четыре пальца на руке (или на лапе), поэтому им было бы сподручнее пользоваться системой с основанием 8. Довольно интересно следующее: большая часть правил, известных нам по десятеричной системе, вполне применима и в восьмеричной.

<p>Глава 8</p><p>Альтернативы десятке</p>

Число 10 — исключительно важное для человека. У большинства из нас по десять пальцев на руках и на ногах, и мы, конечно, предпочитаем, чтобы и тех, и других было по десять. Поскольку на пальцах удобно считать, человек выстроил всю систему счисления на основании числа 10.

Как упоминалось в предыдущей главе, такая система называется «система с основанием 10», или «десятеричная». Она кажется нам столь естественной, что поначалу сложно даже найти альтернативу. Действительно, когда видим число 10, нас тянет представить, что оно означает, например, десять уток.

Перейти на страницу:

Похожие книги