Читаем Код. Тайный язык информатики полностью

Да, реле слишком аппетитное изобретение, чтобы просто оставить его пылиться в музее связи. Заходим в музей, хватаем его, засовываем во внутренний карман пиджака и быстро ретируемся. Реле нам пригодится. Однако прежде чем приступить к работе с ним, нужно научиться считать.

<p>Глава 7</p><p>Наши десять цифр</p>

Идея, что язык — просто код, вполне логична. Многие как минимум пытались выучить иностранный язык в старших классах, поэтому сложно поспорить, что кошка в других языках может называться cat, gato, chat, Katze, kot или καττα.

Кажется, что числа менее пластичны в культурном контексте. Независимо от того, на каком языке мы говорим, как произносим числительные, практически любой собеседник на этой планете, скорее всего, будет записывать числа точно так, как и мы.

1 2 3 4 5 6 7 8 9 10

Не потому ли математику называют универсальным языком?

Несомненно, числа — самый абстрактный код, с которым приходится иметь дело в повседневной жизни. Видя число, мы не пытаемся его мгновенно с чем-то соотнести.

3

Можно представить три яблока или три других предмета, но с тем же успехом можно узнать из контекста, что речь идет о дне рождения ребенка, телевизионном канале, хоккейном счете, количестве чашек муки, нужных для приготовления пирога. Уже потому, что числа столь абстрактны, нам сложнее понять, что три яблока можно обозначить не только числом 3.

Большая часть этой главы и вся следующая помогут убедиться, что ровно такое же количество яблок можно обозначить и числом 11.

Для начала давайте расстанемся с мыслью, что в числе 10 есть нечто особенное. Неудивительно, что в большинстве цивилизаций сложились системы счисления на основе числа 10 (или 5). С глубокой древности люди считали на пальцах. Если бы у человеческой особи было восемь или двенадцать пальцев, то все счетные системы были бы немного иными.

Именно поэтому система счисления с основанием 10, также именуемая десятеричной, выбрана совершенно произвольно. Мы придаем десятке чисел поистине магическое значение и придумали для нее особые названия. Десять дней образуют декаду, десять десятилетий — век, десять веков — тысячелетие. Тысяча тысяч — это миллион, тысяча миллионов — миллиард. Все эти числа являются степенями числа 10.

101 = 10

102 = 100

103 = 1000 (тысяча)

104 = 10 000

105 = 100 000

106 = 1 000 000 (миллион)

107 = 10 000 000

108 = 100 000 000

109 = 1 000 000 000 (миллиард)

Большинство историков полагают, что числа изначально были придуманы для подсчета предметов, например людей, имущества и торговых сделок. Если у кого-то было четыре утки, то их можно было обозначить в виде четырех нарисованных уточек.

Наконец человек, чья работа заключалась в рисовании уток, подумал: «Зачем рисовать четырех уток? Не изобразить ли одну и обозначить, что на самом деле уток четыре, скажем, черточками?»

Когда потребовалось нарисовать 27 уток, черточки выглядели нелепо.

Подумалось: «Должен быть другой способ, лучше», — так появилась система чисел.

Из всех древнейших числовых систем до сих пор в ходу римские цифры. Они встречаются на циферблатах, ими выбивают даты на памятниках, нумеруют некоторые страницы в книгах, используют при подсчете некоторых элементов и — что наиболее раздражает — при указании информации об авторских правах в кинофильмах. (Иногда чтобы ответить на вопрос, в каком году был снят фильм, нужно молниеносно расшифровать какие-нибудь MCMLIII в хвосте титров.)

Двадцать семь уток римскими цифрами будет так.

Принцип довольно прост: X означает 10 черточек, V — пять.

Вот римские цифры, сохранившиеся до наших дней.

I V X L C D M

I — это единица; она похожа на черточку или один поднятый палец. V — это пятерка; возможно, этим символом обозначалась ладонь. Из двух V составляется X, то есть десятка.

L — это пятьдесят, C — буква, с которой начинается латинское centum, — сто, D — пять сотен, M — первая буква в слове mille — тысяча.

Хотя мы, возможно, с этим не согласимся, но на протяжении веков считалось, что римские цифры удобны для сложения и вычитания, именно поэтому они так долго использовались в Европе при ведении бухгалтерии. Действительно, при сложении двух римских чисел просто выписываются рядом все символы из двух этих чисел, а затем применяется всего несколько правил: пять I образуют V, две V — X, пять X — L и т. д.

Сложно умножать и делить числа, записанные римскими цифрами. Многие другие ранние числовые системы (например, греческая) аналогично не подходят для сложных математических действий. Древние греки разработали превосходную геометрию, которая до сих пор практически без изменений преподается в школах, но так ли известна древнегреческая алгебра?

Перейти на страницу:

Похожие книги