Заметим, что подобные автокорреляционные кривые применялись уже много лет в оптике и что прибором, с помощью которого их получали, был интерферометр Майкельсона (рис. 10). Интерферометр Майкельсона посредством системы зеркал и линз разделяет световой луч на две части, которые посылаются по путям разной длины и затем вновь соединяются в один луч. Различные длины путей вызывают различные задержки во [c.273] времени, и результирующий луч будет равен сумме двух отражений входящего луча, которые можно опять обозначить через
Рис. 10. Интерферометр Майкельсона
Все это неявно содержалось в работе Майкельсона. Нетрудно видеть, что при выполнении преобразования Фурье над интерференционными полосами интерферометр дает нам энергетический спектр света и тем самым по существу является спектрометром. Более того, это самый точный из известных нам типов спектрометров.
Спектрометр такого типа получил должное признание лишь в последние годы. Мне говорили, что теперь он принят в качестве важного средства прецизионных измерений. Отсюда видно, что методы обработки автокорреляционных записей, которые я сейчас изложу, применимы также в спектроскопии и позволяют довести до предела ту информацию, которую может дать спектрометр.
Рассмотрим, как получить спектр мозговой электрической волны по автокорреляции. Пусть
Здесь
Будем впредь полагать, что первые две части спектра: дискретная часть и непрерывная часть, возрастающая [c.274] на множестве меры нуль, — отсутствуют. В этом случае можно написать
где — спектральная плотность. Если принадлежит к классу Лебега
Как видно по автокорреляционной кривой мозговых волн, преобладающая часть мощности спектра сосредоточена в окрестности частоты 10
Два пика около 10 и —10 суть зеркальные изображения друг друга.
Известны различные способы численного выполнения разложения Фурье, включая применение интегрирующих приборов и цифровые вычислительные процессы. В обоих случаях неудобством является то, что главные пики расположены около 10 и —10, а не около 0. Но существуют способы переноса гармонического анализа в окрестность нулевой частоты, которые весьма сокращают объем работы. Заметим, что
Другими словами, если умножить
Но
Следовательно, действительная и мнимая части функции
Частоты в окрестности +20 можно исключить, пропустив эти две функции через фильтр нижних частот, что равносильно усреднению по интервалу в одну двадцатую секунды или более.
Пусть мы анализируем кривую, у которой большая часть мощности сосредоточена вблизи частоты 10
а другая — примерно так:
Усреднив вторую кривую по интервалу в 0,1 сек, получим нуль. Усреднив первую кривую, получим половину максимальной высоты. Таким образом, сглаживая
Обозначим теперь через
Выражение (10.07) должно быть действительным, так как это спектр. Следовательно, оно будет равно