Читаем Кибернетика или управление и связь в животном и машине полностью

Теперь я хочу перейти к вопросу выборки. Для этого мне понадобятся некоторые идеи из моих предыдущих работ об интегрировании в пространстве функций[193]. С помощью этого аппарата мы сможет построить статистическую модель непрерывного процесса с заданным спектром. Хотя такая модель не воспроизводит в точности процесса формирования мозговых волн, она достаточно близка к нему, чтобы доставить статистически значимую информацию о том, какой среднеквадратической ошибки можно ожидать в спектрах волн, подобных представленному выше.

Здесь я сформулирую без доказательств ряд свойств некоторой действительной функции х(t, ), уже излагавшихся в моей статье по обобщенному гармоническому анализу и в других работах[194]. Действительная функция х(t, ) зависит от переменной t, изменяющейся от — до , и от переменной , изменяющейся от 0 до 1. Она изображает одну пространственную координату броунова движения, зависящую от времени t и параметра статистического распределения. Выражение

           (10.09)

определяется для всех функций (t) класса Лебега L2, [c.280] в интервале от — до +. Если (t) имеет производную, принадлежащую L2, то выражение (10.09) понимается как

           (10.10)

и затем определяется для всех функций (t) из L2 некоторым вполне определенным предельным процессом. Другие интегралы

           (10.11)

вводятся аналогичным образом.

Основная теорема, используемая нами, утверждает, что

           (10.12)

можно найти, положив

 ,          (10.13)

где переменные k образуются всеми возможными способами путем отождествления всех пар переменных k, друг с другом (если n четно)[195], и образовав

           (10.14)

Если n нечетно, то

           (10.15)

Другая важная теорема, касающаяся этих стохастических интегралов, гласит: пусть F{g} — функционал [c.281] от g(t), такой, что F[x(t, )] есть функция, принадлежащая к L по и зависящая только от разностей x(t2, )—х(t1, ); тогда для любого t1 и почти всех

           (10.16)

Это эргодическая теорема Биркгоффа, доказанная некогда автором[196] и другими.

В упомянутой статье из «Acta Mathematica» установлено, что если U — действительное унитарное преобразование функции K(t), то

 ,          (10.17)

где отличается от только сохраняющим меру преобразованием интервала (0, 1) в себя.

Пусть теперь К(t) принадлежит к L2, и пусть

           (10.18)

в смысле Планшереля[197]. Рассмотрим действительную функцию

 ,          (10.19)

изображающую отклик линейного преобразователя на броунов вход. Она будет иметь автокорреляцию

 ,          (10.20)

[c.282]

которая, в силу эргодической теоремы, почти для всех значений будет равна

           (10.21)

Тогда спектр почти всегда будет равен

           (10.22)

Но это истинный спектр. Выборочная автокорреляция за время усреднения А (в нашем случае 2700 сек) будет равна

           (10.23)

В результате выборочный спектр почти всегда будет иметь временное среднее

           (10.24)

Следовательно, выборочный спектр и истинный спектр будут иметь одно и то же среднее значение по времени.

Для многих целей нам интересен приближенный спектр, в котором интегрирование по т производится только по интервалу (0, В), где В в описанном выше частном случае равно 20 сек. Напомним, что f(t) — действительная функция, а автокорреляция — симметрическая [c.283] функция. Поэтому интеграл от 0 до В можно заменить интегралом от —В до В:

           (10.25)

Эта величина будет иметь среднее значение

           (10.26)

Квадрат приближенного спектра в интервале (—В, В) будет равен

 

а эта величина будет иметь среднее значение

 

 

 

 [c.284]

 

 

 

 .          (10.27)

Как известно, если m обозначает среднее, то

           (10.28)

Таким образом, среднеквадратическая ошибка приближенного выборочного спектра будет равна

           (10.29)

Но

           (10.30)

Следовательно, интеграл

           (10.31)

равен величине 1/А, умноженной на текущее взвешенное среднее от g. Если усредняемая величина приблизительно постоянна в малом интервале 1/А, как [c.285] можно здесь разумно предположить, мы получим как приближенную главную часть среднеквадратической ошибки в любой точке спектра выражение

           (10.32)

Заметим, что если приближенный выборочный спектр имеет максимум при u=10, то величина этого максимума

           (10.33)

Эта величина при гладкой функции q мало будет отличаться от |q(10)|2. Среднеквадратическая ошибка спектра, отнесенная к этой величине как единице измерения, будет равна

           (10.34)

и, следовательно, не превосходит

           (10.35)

В рассматриваемом случае она равна

           (10.36)

Если допускать реальность явления провала, или, по крайней мере, реальность крутого падения нашей кривой на частоте около 9,05 гц, то будет уместно поставить по этому поводу несколько физиологических вопросов. Три главных касаются физиологической функции наблюденных нами явлений, физиологического механизма, производящего их, и применения, которое они могли бы найти в медицине.

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука