В этой общей энергийно–выразительной области числа мы реально не останавливаемся на осуществлении какой–нибудь из трех основных категорий первой триады, но мыслим ее осуществленной целиком. Наша выразительная энергия числа энергийно выражает не только самый перво–принцип числа вообще, но и его раздельность и его становление. Числовое «ставшее» «выражает» всю смысловую триаду, включая и становление. А это больше всего и дает право называть всю эту выразительную область именно энергийной. Энергийно–выра–зительная сторона числа особенно важна включением этого момента становления. Становление (в данном случае пока чисто смысловое, без перехода в распадение) включает в себя неподвижную едино–раздельную структуру числа вместе с ее инобытием. Становление в диалектике ведь и есть синтез бытия и инобытия. Будучи перенесено в сферу выражения, оно в самом выражении дает синтез бытия и инобытия, т. е. выражение тем самым включает в себя свою соотнесенность со своим инобытием, не переходя, однако, фактически в это инобытие, а оставаясь все время чистым смыслом. Если бы тут был реальный переход в инобытие, это привело бы к распаду того, что тут выражено. Тут, однако, нет ни инобытия как факта, ни распадения смысла, а есть только смысловое же его распадение и различение, т. е. новый смысловой рисунок, новый — по сравнению с отвлеченно данной первой триадой.
Вот это–то обстоятельство и определяет собой то, что тут естественнее всего остановиться в последовательной дедукции диалектических категорий числа. Здесь число оказывается не только смыслом, не только фактом и не только осмысленным фактом, но этот осмысленный факт дан для иного, открыт для восприятия всем иным, в собственном смысле выражен. Осмысленный факт может ведь и быть дан просто, сам по себе, сам для себя. Это — начальная и наименее полная форма выражения. Когда же осмысленный факт оказывается данным и для иного, он в собственном смысле есть выражение. Он еще не распался на множество отдельных фактов, но покамест пребывает единым, цельным и нераздельным фактом. Однако это[т] факт расписан извне, разрисован и различен по своему смыслу, он — картина для всего иного. И вот поэтому–то естественно остановиться именно здесь, полагая в этом месте границу между основными, первичными категориями (аксиомами) и дальнейшими, вторичными категориями (теоремами).
В–четвертых, установивши эту наиболее естественную границу для аксиоматической области, мы можем установить и общую базу для дедукции всех основных аксиом. Эта общая база, сформулированная нами в предыдущем параграфе, должна быть сейчас дана в развитом виде. Заключается она в том, что аксиомы суть осуществленные категории, где каждая категория мыслится осуществленной на фоне общей сущности числа. Аксиома есть суждение, где данная категория, трактуемая как основная (границы основных категорий только что указаны нами), является предикатом для общего субъекта—числа. Поэтому шесть диалектических этапов числа, рассмотренных нами в § 21, должны превратиться в суждения (аксиомы) следующего типа: I. Число есть чистый акт полагания.
II. Число есть едино–раздельный акт полагания.
III. Число есть становящийся акт полагания.
IV. Число есть ставший акт полагания.
V. Число есть выразительный акт полагания.
Сюда необходимо присоединить, что II суждение соответствует в § 21 II и III категориям, потому что установленные там утверждение (II) и отрицание (III) оба вместе определяют собой именно едино–раздельный акт (или акт как координированную раздельность). Соответственно III аксиома из указанных только что соответствует IV тамошней категории, IV аксиома — V категории, V аксиома — VI категории. Эта схема аксиом, с другой стороны, [есть ] точное воспроизведение категориальной схемы в § 31, 1е.