Не будем, однако, удивляться, что аксиоматика начнется у нас с того, что как раз имеет меньше всего математический смысл. Поскольку сейчас нам предстоит формулировать аксиому именно принципа, постольку эта аксиома должна иметь максимально обобщенный вид и постольку нам тут еще не придется употреблять терминов конкретной математики. Больше того. В этой аксиоме перво–принципа должно быть повторено— но уже в виде последнего резюме — то, что мы могли сказать о числе вообще наиболее существенного. Что это число относится к сфере актов чистого полагания, это есть самое последнее и самое общее резюме всего учения о числе. Это и должно быть в данном случае математическим перво–принципом. Из общесмыслового перво–принципа, который является перво–принципом и всякого содержания, мы выделяем чисто числовой, математический перво–принцип, гласящий о функционировании только актов полагания, а не самого полагаемого. И кроме того, этот перво–принцип, много раз формулированный нами выше, берется в своей тоже специфической функции. А именно, в математической аксиоматике мы рассматриваем его не как чистое действие, не как самый перво–принцип в его самостоятельной определяемости всех других числовых построений, но — перво–принцип как суждение, как первое и основное суждение в математике, лежащее в последней глубине всех прочих математических суждений. Поэтому мы здесь не просто фиксируем самый акт перво–полагания, но высказываем суждение: число есть чистый акт перво–полагания. Этим отличается аксиоматическое утверждение перво–принципа от того категориального, которое исследовалось выше.
Выставляемая нами аксиома числового перво–прин–ципа обладает многими интересными свойствами, категориальный аналог которых мы встречали в предыдущем анализе. Остановимся вкратце на самом главном.
Число есть прежде всего некая совокупность. В совокупности для простоты пусть находится три или четыре полагания, хотя «единица» и «нуль» тоже есть некоторые специфические совокупности. Спрашивается, только ли эти три акта полагания различны или они еще и тождественны? То, что они различны и раздельны, это известно всем. Но мысль требует, чтобы они были и тождественны. Когда я ставлю на листе бумаги точку и потом рядом с нею другую точку, то они, конечно, различны, различны по местоположению, по жирности чернил и пр. Но возьмем две математические точки. Чем они отличаются друг от друга? Ничем. Они, конечно, мыслятся как бы в двух разных положениях, напр. на прямой при определенном отстоянии одна от другой. Но ясно, что это отстояние, или расстояние, не имеет ровно никакого отношения к самим точкам и каждая из них может обсуждаться независимо от своего абсолютного положения на линии, на плоскости и т.д. Итак, все точки суть некое абсолютное тождество, самотождество, и в последней своей смысловой глубине они абсолютно неразличимы. Это же самое касается и актов мысленного полагания, т. е. всякого числа вообще. Но если в числе «три» эти три отдельные акта неразличимы, то тогда и само «число», взятое как таковое, тоже внутри себя неразличимо, оно есть некое абсолютное тождество. Более того. Если мы возьмем все возможные числа, то поскольку каждое из них есть абсолютная неразличимость, то и все числа, взятые вместе, — все возможные, действительные и необходимые числа суть тоже некая общая и абсолютная неразличимость и самотождество. И вот это–то и есть числовой перво–принцип. Это и значит, что число есть чистый, т.е. в себе неразличимый, абсолютно простой, акт смыслового полагания.
Скажут: но ведь это же не есть число; число есть раздельность, а вы утверждаете полную неразличимость. На это надо сказать, что мы нисколько не утверждаем, что число есть эта абсолютная неразличимость. Абсолютная неразличимость и самотождество есть не самое чиСло, но перво–принцип числа, и аксиома об абсолютном числовом аш0–тождестве не есть суждение о самих математических числах, но лишь то первое и исходное положение, на котором будут базироваться и конкретно–математические суждения. Естественно, что база чем–то специфически отличается от того, что на этой базе построено. Мало того. Мысль требует, чтобы эта неразличимость как раз и была принципом различимости, и это мы сейчас разъясним.
Каждая вещь есть данная вещь именно потому, что она не есть что–нибудь иное. Это утверждение на первый взгляд кажется шуткой и тавтологией. Однако тут высказывается фундаментальное положение философии, без признания которого невозможно и прикоснуться ни к какой теории определения. Если вещь есть нечто отличное от иного и, следовательно, есть она сама, то это возможно только тогда, когда мы внутри нее не фиксируем ровно никаких различий. Вещь есть именно она сама: в этом простейшем и очевиднейшим утверждении с абсолютной необходимостью требуется, чтобы она мыслилась вне всяких своих частей. Это делается до полной осязательности ясным, если мы начнем рассуждать со стороны этих самых «частей».