Наша точка зрения в области математической аксиоматики должна быть совершенно иная. Нас интересует сама аксиоматика, аксиомы сами по себе. Философию здесь мы понимаем как смысловое уяснение и разъяснение самого же исследуемого предмета. Сначала нужно ведь понять, что такое математические аксиомы, и уяснить себе, как мы к ним приходим, а уже потом заниматься вопросами об их функционировании в той или другой области (напр., в психике развивающегося человека). С этой точки зрения Кант, как сказано было выше, напр., в своем учении о времени и пространстве занимается вопросами не принципиальными и не теми, которые составляли бы существо вопроса. Кант не задается вопросом о том, что такое время или что такое пространство. Он, уже обладая определенным взглядом на то и другое, ставит вопрос о том, откуда происходит то и другое, из чувственного опыта или из априорных форм субъекта. А между тем, то понимание пространства и времени, которым оперирует Кант, отнюдь не является так уже безупречным и разносторонним. Это очень узкое и очень бедное ньютонианское понимание, которое отсутствовало раньше в течение целых тысячелетий и которое весьма условно и сомнительно и с нашей современной точки зрения.
Такое положение дела оказывается возможным потому, что вначале не подвергается никакому анализу самое– пространство и время, а ставятся вопросы, уже предполагающие определенное их понимание и указывающие на их судьбу уже в какой–нибудь инобытийной, в сравнении с ними самими, сфере. Можно иметь какие угодно интуиции времени и пространства, и можно как угодно решать вопрос об их реальности: это два совершенно разные вопроса. Решивши один из них, мы еще ничего не сказали для решения другого вопроса. А гносеологи и метафизики думают, что эмпиризм или априоризм уже сами по себе способны решить вопрос о существе [дела ].
Мы не будем решать и даже ставить вопроса о том, опытного или априорного происхождения математические аксиомы, условны ли они и произвольны или безусловны и абсолютно необходимы, суть ли они реальности или только явления нашей психики, нашей физиологии, нашего словесного аппарата. Таких вопросов очень много; и разрешать их здесь — это значит писать большой том и уклониться от существа вопроса. Нас интересуют сами аксиомы, сама аксиоматика, ее логическое и вообще смысловое содержание. Нам нужно знать, каковы эти аксиомы и сколько их и почему их столько, а не больше и не меньше. И, только зная, что они такое по существу, мы могли бы ставить вопросы гносеологические или метафизические. В противном случае мы уподобились бы инженеру, который, не зная, что такое логарифмы, приступил бы к своим расчетам с таблицей логарифмов в руках. Сначала нужно знать, что такое предмет сам по себе, а потом уже говорить о его функционировании (в субъекте, в объекте или где угодно).
Во–вторых, общей особенностью современной математической аксиоматики является ее формалистический и антидиалектический характер. Выставляется ряд аксиом; и — неизвестно, почему, собственно, взяты эти аксиомы, а не другие и откуда можно почерпнуть гарантию полноты этого списка аксиом. Такая беспомощность вполне характерна, напр., для знаменитого Гильберта, которого математики почему–то особенно превозносят именно в этом отношении. Мы читаем его перечисление аксиом и — совершенно не знаем, откуда он их получил, как он к ним логически пришел и действительно ли все аксиомы тут перечислены. Ведь система аксиом должна быть такова, чтобы была действительно ясна ее полнота и логическая завершенность. У Гильберта же мы можем в крайнем случае сказать только то, что каждая из данных аксиом имеет в математике действительное значение, но совсем не можем сказать, что тут исчерпана вся аксиоматика, и не знаем, где гарантия ее логической законченности.
Аксиоматика, стало быть, должна ясно показать логическое, смысловое происхождение всех аксиом, чтобы мы были уверены в ее полноте и обоснованности. Тут не может быть простого и наивного описания аксиом, какое мы находим у Гильберта. Должна быть четкая их диалектическая дедукция, обоснованная как на общенаучной диалектике, так и на смысловом содержании самого понятия числа. Тут не может быть никакой случайности, никакого наивного описательства. Существо математической аксиоматики должно быть выявлено со всей логической последовательностью и строгой систематикой.
Такой диалектической систематики общих аксиом числа невозможно найти в современной философии числа. И построение ее—очередная задача современной науки.
Важно прежде всего точно знать положение самой аксиоматики в системе математического знания вообще, а потом уже выяснится и содержание аксиом.