Читаем Хаос и структура полностью

1. Вступительные замечания. «Теоретическое мышление каждой эпохи, — пишет Энгельс (Диал. прир. 1941, 24), — а значит и нашей эпохи, это—исторический продукт, принимающий в различные времена очень различные формы и вместе с тем очень различное содержание. Следовательно, наука о мышлении, как и всякая другая наука, есть историческая наука, но об историческом развитии человеческого мышления». «Теория законов мышления, — продолжает там же Энгельс, — не есть вовсе какая–то раз и навсегда установленная «вечная истина», как это связывает со словом «логика» философская мысль». «Знакомство с ходом исторического развития человеческого мышления, с выступавшими в различные времена воззрениями на всеобщие связи внешнего мира необходимо для теоретического естествознания потому, что оно дает масштаб для оценки выдвигаемых им самим теорий». Из этих рассуждений Энгельса с необходимостью вытекает то, что и математика вовсе не есть наука только о вечных истинах, что ее истина исторически обусловлена, исторически меняется и логика, желающая осознать основы математического мышления, должна учитывать историческо–социальные типы и стили этого мышления, чтобы не впасть в филистерство.

Тем не менее математику почти все считают чем–то временным и над–историческим. Религию, искусство, науку, философию мы умеем понимать исторически, как нечто неотъемлемо свойственное тому или иному социальному типу. Но математика мыслится нами как нечто в такой мере абсолютное, что не может подниматься никаких и вопросов о ее типах, о разной ценности этих типов и о социальных корнях каждого такого стиля. Конечно, можно и в математике дойти до таких последних абстракций, которые будут общи всем известным нам типам культуры, и на этом основании рассуждать о вечности ее положений. Но в таком же смысле и в каждом произведении науки, искусства, техники и пр. можно найти такую абстрактнейшую сторону, которая почти не меняется при переходе от одного произведения искусства к другому. Однако ни в коем случае такое знание не будет конкретным. И оно ничего не скажет нам об искусстве, как оно реально есть.

Математика—человечна, создание человеческого искусства. Она социальна, исторична. Она имеет свой стиль, стиль своей эпохи. И если до сих пор из нее старались выкинуть всякое человеческое содержание и превратить ее в максимально абстрактную и формальную науку, то это тоже было результатом определенной эпохи культуры. И эту рассудочную, абстрактную эпоху культуры мы должны уметь точно формулировать, если хотим понять истинную сущность математики. Всякий тип культуры вообще любит ставить себя в центре всей истории и свои принципы толковать как вечные. В этом, к сожалению, мы должны отказать всякому историческому стилю культуры. Общезначимость, непреложность математических положений для нас, к сожалению, уже есть не более как продукт одной весьма специфической культуры. И мы не обязаны остановить историю только на каком–нибудь одном временном ее типе.

Математику до того выпотрошили, до того лишили ее всякого ее жизненного и человеческого содержания, что теперь уже неудивительно встретить фразы вроде того, что математика не знает, что она говорит и о чем она говорит. Действительно, о чем могут говорить арифметические и аналитические операции в математике? Что такое, напр., то же сложение и вычитание, то же логарифмирование или дифференцирование? О чем говорят эти процессы? Ровно ни о чем! Вкладывайте сюда какое угодно содержание. И что именно здесь утверждается? Ровно ничего не утверждается! Это пустые слова о пустоте. Вот до чего дошло современное форм–ализирование и абстрактизация математической науки.

Перейти на страницу:

Похожие книги