Читаем Хаос и структура полностью

Конечно, студентов меньше, чем учащихся вообще, но это при двух условиях: надо все понятийные отношения свести на чисто количественные; и надо, когда мы говорим об учащихся вообще, забывать о студентах и, когда мы говорим о студентах, забывать об учащихся. При таком подходе действительно «студентов меньше, чем учащихся вообще». Но ведь структура понятия «учащийся» потому и есть структура, что входящие в него виды не исчезают в его безразличной общности, но сохраняются и образуют вместе некую связную картину. «Учащийся» только формально шире по объему, чем «студент». Допустим, что мы всерьез не знаем, что такое «студент». Можно ли в таком случае считать, что с появлением этого нового признака в понятии «учащийся» объем этого понятия не расширился? Покамест мы не знали, что такое «студент», мы, конечно, тем самым и к меньшему количеству учащихся применяли понятие «учащийся». А когда мы узнали, что такое «студент», то понятие «учащийся» стало и применяться нами к гораздо большему числу учащихся. Другими словами, с расширением содержания понятия «учащийся» расширился и его объем. Это, однако, возможно только потому, что, перейдя к понятию «студент», мы не забыли понятия «учащийся», а, наоборот, локализировали его в этом последнем и перенесли на него целиком это понятие «учащийся». Иначе говоря, это обогащение объема понятия «учащийся» вместе с расширением его содержания стало возможным только потому, что мы перестали рассматривать объем и содержание в их разорванности и самостоятельности, но стали рассматривать их как структурное целое: с присоединением каждого нового признака понятия возникает и новое видовое различие этого понятия, т. е. новый вид; а с устранением признака устраняется и соответствующее видовое понятие. Стоит только разорвать эту связь содержания и объема понятия, т. е. мыслить содержание независимо от того, какие объемы реально, конкретно с этим связаны, как уже придется более бедное содержание связывать с более обширным объемом, хотя бы даже мы и не имели реально этих объемов. Только уже зная, что такое «студент», мы можем считать понятие «учащийся» шире понятия «студент» по объему; а не зная этого, как можно судить о размерах объема «учащийся»? Однако если мы уже знаем, что такое «студент», то это знание само стало возможным только потому, что мы перенесли на него понятие «учащийся» (ибо «студент», который был бы не «учащийся», невозможен), т. е. тем самым перенесли на него в некотором роде и все объемы, с ним связанные (ибо если бы на «студента» переносилась бы только часть объема «учащийся», то «студент» опять–таки был бы не «учащимся», а только частью этого «учащегося»). Следовательно, самое суждение «студентов меньше, чем учащихся вообще» возможно только как формализация и обесструктурение другого суждения — «студент есть учащийся». Ибо если действительно студент есть учащийся, а учащиеся—это и школьники, и дошкольники, и учащиеся–единоличники[215], то, мысля «студент есть учащийся», мы обязательно примышляем и все эти объемы, связанные с «учащимся вообще», при условии, конечно, если мышление наше ясно и отчетливо и если все виды понятия мы мыслим как единую структуру. А тогда «студент» — более обширный объем, чем «учащийся вообще». Однако и эти все рассуждения о соотношении содержания и объема понятия в его структуре, в сущности, весьма условны и проводятся нами только в отношении и ради приспособления к популярным взглядам на содержание и объем понятия (а взгляды эти есть формальная логика). Если говорить точно, то для структурной логики не существует вовсе никакого содержания, ни объема понятий. Немного ниже—опять–таки из математики — мы увидим, [что] объем всякого понятия всегда бесконечен и что, следовательно, все понятия имеют совершенно один и тот же объем, а содержание понятия разнообразится только своей структурой. Но прежде чем заговорить об этом, укажем конкретно научный пример структурных умозаключений, не имеющих ничего общего ни с объемными, ни с признаковыми операциями.

4. В предыдущем мы уже столкнулись с тем колоссальной важности фактом, что богатейшей наукой, построенной на таких структурных умозаключениях, является химия (хотя примеров таких умозаключений достаточно и во всякой науке).

Перейти на страницу:

Похожие книги