Ясно, следовательно, что различие всех элементов чисто структурное, а не непосредственно–качественное. Ибо непосредственное качество всех элементов одно и то же, а именно водород. Но раз так, то всякий химический элемент есть структурная функция водорода. И значит, можно говорить и о бесконечно–малых приращениях этого аргумента и этой функции, и об их отношении, о пределе этого отношения, т. е. о производной. Так как производная от функции есть, как мы знаем, принцип ее становления, то, во–первых, производной от всякого химического элемента является, очевидно, принцип того или иного его конкретного свойства или поведения. Наиболее ярким выражением такой химической производной является валентность, т. е. способность атома присоединять к себе различное количество других атомов, ибо способность эта, очевидно, играет основную роль в поведении атома на фоне других атомов. Валентность — великолепный пример на производную чисто структурного типа. Но это значит, что сам атом данного химического элемента, являющийся функцией водорода, есть интеграл от валентности по водороду, а каждое его отдельное конкретное свойство (атомный вес, температура плавления, температура кипения и пр.) есть дифференциал.
Во–вторых, эти же самые категории бесконечно–малого можно представить и иначе (вероятно, их можно представить еще и многими другими способами). А именно, поскольку производная от функции есть метод становления последней, а всякая структура тоже может рассматриваться как метод и предел известного рода становления, то вместо валентности в качестве производной можно выдвигать и силу структуры. Если независимое переменное у нас водород, т. е. положительно заряженное ядро водорода, т. е. протон, а функция—электрический заряд какого–нибудь элемента, то именно структурное строение всякого такого атома есть то, к чему стремится изменение протона, когда из водорода и возникает данный новый элемент. Но если структура атома, т. е. взаимоотношение протонов и электронов, есть в данном случае производная, то интегралом явится сам данный атом в полноте своих физико–химических свойств, а дифференциалом—тот же атом с тем или иным отдельным свойством.
Эта инфинитезимальная система кроется уже и в самом водороде. Если водородный атом как целое есть функция электрического заряда его ядра, то в условиях непрерывности мы получаем и соответствующую валентность водорода, в то время как самая его структура есть интеграл, а всякое реальное свойство—дифференциал.
Но метод бесконечно–малых, применимый на атоме водорода, применим и на любом химическом элементе, применим, очевидно, также и на химических соединениях, и на химических реакциях. Если считать аргументом вступающие в реакцию вещества, а функцией—результаты этой реакции, то мы уже видели, что тут можно ставить вопрос о скорости реакции, и эта скорость может пониматься здесь как самая настоящая производная (в логическом смысле слова). Но вовсе не обязательно говорить только о скорости. Производная здесь есть вообще то или иное направление химической реакции, как и в логике (мы видели) производная есть предельное направление его становления. Если так, то прежде всего опять–таки сама же структура химического соединения или химической реакции должна рассматриваться как производная от данного химического соединения или реакции. Если независимое переменное — «медь, сера, кислород», а функция — «медный купорос», то производная здесь—метод получения медного купороса, т. е. присоединение одного атома меди и одного атома серы.