Читаем Кантор. Бесконечность в математике. полностью

Эта запись позволяет нам установить взаимно однозначное соответствие между «индивидуальными» натуральными числами и парами натуральных чисел:

Это соответствие доказывает, что N х N счетное, следовательно, его мощность равна X. Итак, с одной стороны, произведение мощностей дает понять, что мощность N x N равна X0 ∙ X0 . С другой стороны, мы только что доказали: мощность N х N равна X0 . Отсюда следует, что X0 ∙ X0 = X0 .

Мы — члены Земли, но не 5, поскольку не являемся планетами Солнечной системы. С точки зрения S каждая планета — самостоятельный объект, и не имеет никакого значения, как он образован. Аналогично, множество D определенное выше, состоит из двух членов, и для него не важно, из чего, в свою очередь, состоят они.

Теперь рассмотрим множества, образованные натуральными числами. Например, множество N, состоящее из всех натуральных чисел, множество четных чисел, нечетных, простых; множество, состоящее только из числа 45; только из тех чисел, которые оканчиваются на 8; состоящее только из чисел 5,7 и 22 и многие другие, каждое из которых, как в случае с Q и I, должно приниматься как самостоятельный объект. Итак, мы можем рассмотреть множество, члены которого — это все множества, могущие быть образованными при помощи натуральных чисел — как упомянутые выше, так и все остальные возможные множества. Это новое множество обычно обозначается 'P(N) и читается как «части N», а его члены, следовательно, — это множества, а не числа. Множество всех четных чисел — член 'P(N), как и множество, состоящее из числа 2; но само число 2 — не член 'P(N), так как его члены — только множества. Здесь для теории множеств проходит тонкое, но очень важное различие: число 2 и множество, состоящее из числа 2, — не одно и то же. Чтобы подчеркнуть это различие, множество из числа 2 обычно записывается как {2}. Фигурные скобки позволяют нам графически показать разницу между 2 — числом — и {2} — множеством. Так же, например, множество, образованное числами 2 и 34, обозначается {2, 34}, а множество четных чисел — {0, 2, 4, 6, 8,...} (см. рисунок). Таким образом, множество D упомянутое выше и состоящее из множеств Q и I, будет записано как {Q и I}.

ОРДИНАЛЬНАЯ АРИФМЕТИКА

Арифметику кардинальных чисел нельзя путать с арифметикой ординальных. Кардинальные числа связаны с понятием количества, а их сумма — с идеей добавления элементов. Следовательно, как мы только что увидели, X0 + 1 = X0 , то есть X0 + 1 не больше X0 . Ординальные же числа выражают понятие «места в последовательности», и их сумма связана с идеей продвижения по этой последовательности. Так, например, ω + 1 обозначает позицию, идущую непосредственно за ω, и поэтому ω + 1 больше, чем ω. В «Обоснованиях» Кантор также писал и об ординальной арифметике, которая не рассматривается в этой книге.

Некоторые множества, образованные натуральными числами.

ОДИН И НОЛЬ
Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука